Выполнен расчет колебательных и вращательных термов электронных состояний X2Π и A2∑+ молекулы PO. Рассчитан спектр поглощения, соответствующий переходу A2Σ+(ν´=0; J´) – X2Π(ν´´=0; J´´). Проведена оценка эффективности лазерного возбуждения молекул PO в зависимости от спектральных параметров излучения.
спектр поглощения, оксид фосфора
1. Keller-Rudek H., Moortgat G.K., Sander R., Sörensen R. The MPI-Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest // Earth Syst. Sci. Data. 2013. V. 5. P. 365–373.
2. Rodgers M.O., Asai K., Davis D.D. Photofragmentation-laser induced fluorescence: A new method for detecting atmospheric trace gases // Appl. Opt. 1980. V. 19, N 21. P. 3597–3605.
3. Rodgers M.O., Davis D.D. A UV-Photofragmentation / Laser-induced fluorescence sensor for the atmospheric detection of HONO // Environ. Sci. Technol. 1989. V. 23, N 9. P. 1106–1112.
4. Sandholm S.T., Bradshaw J.D., Dorris K.S., Rodgers M.O., Davis D.D. An airborne compatible photofragmentation two-photon laser-induced fluorescence instrument for measuring background tropospheric levels of NO, NOx, and NO2 // J. Geophys. Res. D. 1990. V. 95, N 7. P. 10,155–10,161.
5. Galloway D.B., Bartz J.A., Huey L.G., Crim F.F. Pathways and kinetic energy disposal in the photodissociation of nitrobenzene // J. Chem. Phys. 1993. V. 98, N 3. P. 2107–2114.
6. Lemire G.W., Simeonsson J.B., Sausa R.C. Monitoring of vapor-phase nitro compounds using 226-nm radiation: fragmentation with subsequent NO resonance-enhanced multiphoton ionization detection // Anal. Chem. 1993. V. 65, N 5. P. 529–533.
7. Galloway D.B., Glenewinkel-Meyer T., Bartz J.A., Huey L.G., Crim F.F. The kinetic and internal energy of no from the photodissociation of nitrobenzene // J. Chem. Phys. 1994. V. 100, N 3. P. 1946–1952.
8. Wu D.D., Singh J.P., Yueh F.Y., Monts D.L. 2,4,6-Trinitrotoluene detection by laser-photofragmentation–laser-induced fluorescence // Appl. Opt. 1996. V. 35, N 21. P. 3998–4003.
9. Simeonsson J.B., Sausa R.C. A critical review of laser photofragmentation/fragment detection techniques for gas phase chemical analysis // Appl. Spectrosc. Rev. 1996. V. 31, N 1. P. 1–72.
10. Swayambunathan V., Singh G., Sausa R.C. Laser photofragmentation–fragment detection and pyrolysis–laser-induced fluorescence studies on energetic materials // Appl. Opt. 1999. V. 38, N 30. P. 6447–6454.
11. Daugey N., Shu J., Bar I., Rosenwaks S. Nitrobenzene detection by one-color laser photolysis/laser induced fluorescence of NO (ν = 0–3) // Appl. Spectrosc. 1999. V. 53, N 1. P. 57–64.
12. Shu J., Bar I., Rosenwaks S. Dinitrobenzene detection by use of one-color laser photolysis and laser-induced fluorescence of vibrationally excited NO // Appl. Opt. 1999. V. 38, N 21. P. 4705–4710.
13. Shu J., Bar I., Rosenwaks S. NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphonates // Appl. Phys. B. 2000. V. 71, N 5. P. 665–672.
14. Shu J., Bar I., Rosenwaks S. The use of rovibrationally excited NO photofragments as trace nitrocompounds indicators // Appl. Phys. B. 2000. V. 70, N 4. P. 621–625.
15. Arusi-Parpar T., Heflinger D., Lavi R. Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 24ºC: A unique scheme for remote detection of explosives // J. Appl. Opt. 2001. V. 40, N 36. P. 6677–6681.
16. Heflinger D., Arusi-Parpar T., Ron Y., Lavi R. Application of a unique scheme for remote detection of explosives // Opt. Commun. 2002. V. 204, N 1–6. P. 327–331.
17. Wynn C.M., Palmacci S., Kunz R.R., Zayhowski J.J., Edwards B., Rothschild M. Experimental demonstration of remote optical detection of trace explosives // Proc. SPIE. 2008. V. 6954. P. 695407–8.
18. Arusi-Parpar T., Fastig S., Shapira J., Shwartzman B., Rubin D., Ben-Hamo Y., Englander A. Standoff detection of explosives in open environment using enhanced photodissociation fluorescence // Proc. SPIE. 2010. V. 7684. P. 76840L–7.
19. Wynn C.M., Palmacci S., Kunz R.R., Rothschild M. Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence // Opt. Express. 2010. V. 18, N 6. P. 5399–5406.
20. Wynn C.M., Palmacci S., Kunz R.R., Aernecke M. Noncontact optical detection of explosive particles via photodissociation followed by laser-induced fluorescence // Opt. Express. 2011. V. 19, N 19. P. 18671–18677.
21. Бобровников С.М., Горлов Е.В. Лидарный метод обнаружения паров взрывчатых веществ в атмосфере // Оптика атмосф. и океана. 2010. Т. 23, № 12. С. 1055–1061; Bobrovnikov S.M., Gorlov E.V. Lidar method for remote detection of vapors of explosives in the atmosphere // Atmos. Ocean. Opt. 2011. V. 24, N 3. P. 235–241.
22. Bobrovnikov S.M., Vorozhtsov A.B., Gorlov E.V., Zharkov V.I., Maksimov E.M., Panchenko Y.N., Sakovich G.V. Lidar detection of explosive vapors in the atmosphere // Russ. Phys. J. 2016. V. 58, N 9. P. 1217–1225.
23. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Panchenko Yu.N., Puchikin A.V. Two-pulse laser fragmentation/laserinduced fluorescence of nitrobenzene and nitrotoluene vapors // Appl. Opt. 2019. V. 58, N 27. P. 7497–7502.
24. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Evaluation of limiting sensitivity of the one-color laser fragmentation/laser-induced fluorescence method in detection of nitrobenzene and nitrotoluene vapors in the atmosphere // Atmosphere. 2019. V. 10, N 11, 692. P. 1–11.
25. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Panchenko Yu.N., Puchikin A.V. Dynamics of the laser fragmentation/laserinduced fluorescence process in nitrobenzene vapors // Appl. Opt. 2018. V. 57, N 31. P. 9381–9387.
26. Clair J.M. St., Hanisco T.F., Weinstock E.M., Moyer E.J., Sayres D.S., Keutsch F.N., Kroll J.H., Demusz J.N., Allen N.T., Smith J.B., Spackman J.R., Anderson J.G. A new photolysis laser-induced fluorescence instrument for the detection of H2O and HDO in the lower stratosphere // Rev. Sci. Instrum. 2008. V. 79, N 6. P. 064101-1–064101-14.
27. Larsson K., Johansson O., Aldén M., Bood J. Simultaneous visualization of water and hydrogen peroxide vapor using two-photon laser-induced fluorescence and photofragmentation laser-induced fluorescence // Appl. Spectrosc. 2014. V. 68, N 12. P. 1333–1341.
28. Johansson O., Bood J., Aldén M., Lindblad U. Detection of hydrogen peroxide using photofragmentation laser-induced fluorescence // Appl. Spectrosc. 2008. V. 62, N 1. P. 66–72.
29. Johansson O., Bood J., Aldén M., Lindblad U. Hydroxyl radical consumption following photolysis of vapor-phase hydrogen peroxide at 266 nm: Implications for photofragmentation laser-induced fluorescence measurements of hydrogen peroxide // Appl. Phys. B. 2009. V. 97, N 2. P. 515–522.
30. Larsson K., Hot D., Ehn A., Lantz A., Weng W., Aldén M., Bood J. Quantitative imaging of ozone vapor using photofragmentation laser-induced fluorescence (LIF) // Appl. Spectrosc. 2017. V. 71, N 7. P. 1578–1585.
31. Larsson K., Hot D., Gao J., Kong C., Li Z., Aldén M., Bood J., Ehn A. Instantaneous imaging of ozone in a gliding arc discharge using photofragmentation laser-induced fluorescence // J. Phys. D: Appl. Phys. 2018. V. 51, N 13. P. 1–7.
32. Liao W., Hecobian A., Mastromarino J., Tan D. Development of a photo-fragmentation/laser-induced fluorescence measurement of atmospheric nitrous acid // Atmos. Environ. 2006. V. 40, N 1. P. 17–26.
33. Long S.R., Sausa R.C., Miziolek A.W. LIF studies of PO produced in excimer laser photolysis of dimethyl methyl phosphonate // Chem. Phys. Lett. 1985. V. 117, N 5. P. 505–510.
34. Bisson S.E., Headrick J.M., Reichardt T.A., Farrow R.L., Kulp T.J. A two-pulse, pump-probe method for short-range, remote standoff detection of chemical warfare agents // Proc. SPIE. 2011. V. 8018. P. 80180Q-1–7.
35. Hill E.L., Van Vleck J.H. On the quantum mechanics of the rotational distortion of multiplets in molecular spectra // Phys. Rev. 1928. V. 32, N 2. P. 250–272.
36. Hinkley R.K., Hall J.A., Walker T., Richards W.G. Λ doubling in 2Π states of diatomic molecules // J. Phys. B: Atom. Molec. Phys. 1972. V. 5, N 2. P. 204–212.
37. Van Vleck J.H. On σ-type doubling and electron spin in the spectra of diatomic molecules // Phys. Rev. 1929. V. 33, N 4. P. 467–506.
38. Verma R.D., Singhal S.R. New results on the B2Σ+, b4Σ-, and X2Π states of PO // Can. J. Phys. 1975. V. 53. P. 411–419.
39. Herzberg G. Molecular spectra and molecular structure. I. Spectra of diatomic molecules. Toronto: D. van Nostrand company, 1950. 732 p.
40. Bailleux S., Bogey M., Demuynck C., Liu Y., Walters A. Millimeter-wave spectroscopy of PO in excited vibrational states up to ν = 7 // J. Mol. Spectrosc. 2002. V. 216, N 2. P. 465–471.
41. Rao K.S. Rotational analysis of the γ system of the PO molecule // Can. J. Phys. 1958. V. 36, N 11. P. 1526–1535.
42. Verma R.D., Jois S.S. Emission spectrum of the PO molecule. Part IV. Spectrum in the region 7000–12000 Å // Can. J. Phys. 1973. V. 51, N 3. P. 322–333.
43. Coquart B., da Paz M., Prudhomme J.C. Transition A2Σ+ - X2Π des molecules P16O et P18O. Perturbations de l'etat A2Σ+ // Can. J. Phys. 1975. V. 53, N 4. P. 377–384.
44. Dorn H.-P., Neuroth R., Hofzumahaus A. Investigation of OH absorption cross sections of rotational transitions in the A2Σ+, ν´ = 0 ← X2Π, ν´´ = 0 band under atmospheric conditions: Implications for tropospheric long-path absorption measurements // J. Geophys. Res.: Atmos. 1995. V. 100, N 4. P. 7397–7409.
45. Kuznetsova L.A., Kuz'menko N.E., Kuzyakov Yu.Ya., Plastinin Yu.A. Probabilities of optical transitions in electronic vibration-rotation spectra of diatomic molecules // Sov. Phys.-Usp. 1974. V. 17, N 3. P. 405–423.
46. Kovacs I. Rotational Structure in the Spectra of Diatomic Molecules. Budapest: Academic Kiado, 1969. 307 p.
47. Whiting E.E., Schadee A., Tatum J.B., Hougen J.T., Nicholls R.W. Recommended conventions for defining transition moments and intensity factors in diatomic molecular spectra // J. Mol. Spectrosc. 1980. V. 80, N 2. P. 249–256.
48. Whiting E.E., Paterson J.A., Kovács I., Nicholls R.W. Computer checking of rotational line intensity factors for diatomic transitions // J. Mol. Spectrosc. 1973. V. 47, N 1. P. 84–98.
49. Wong K.N., Anderson W.R., Kotlar A.J. Radiative processes following laser excitation of the A2Σ+ state of PO // J. Chem. Phys. 1986. V. 85, N 5. P. 2406–2413.
50. Chang A.Y., DiRosa M.D., Hanson R.K. Temperature dependence of collision broadening and shift in the NO A ← X(0, 0) band in the presence of argon and nitrogen // J. Quant. Spectrosc. Radiat. Transfer. 1992. V. 41, N 5. P. 375–390.
51. Edlen B. The refractive index of air // Metrologia. 1966. V. 2, N 2. P. 12–80.