Том 34, номер 08, статья № 1

Толстоногова Ю. С., Голик С. С., Майор А. Ю., Ильин А. А., Прощенко Д. Ю., Букин О. А. Влияние частоты повторения лазерных импульсов на пределы обнаружения химических элементов в составе загрязняющих веществ в водных растворах методом фемтосекундной лазерной искровой спектроскопии. // Оптика атмосферы и океана. 2021. Т. 34. № 08. С. 571–576. DOI: 10.15372/AOO20210801.
Скопировать ссылку в буфер обмена
Аннотация:

Методом фемтосекундной лазерной искровой спектроскопии исследована зависимость пределов обнаружения Mg, Mn, Sr, Pb, Al, B в водных растворах от частоты повторения лазерных импульсов. Показано, что при частотах повторения импульсов от 50 до 1000 Гц и при одинаковых остальных условиях эксперимента наилучшие пределы обнаружения для всех исследованных элементов достигаются при частоте повторения 166 Гц.

Ключевые слова:

фемтосекундная ЛИС, частота повторений лазера, предел обнаружения, анализ жидкостей

Список литературы:

1. Cremers D.A. The analysis of metals at a distance using laser-induced breakdown spectroscopy // Appl. Spectros. 1987. V. 41, N 4. P. 572–579.
2. Davies C.M., Telle H.H., Montgomery D.J., Corbett R.E. Quantitative analysis using remote laser-induced breakdown spectroscopy (LIBS) // Spectrochim. Acta Part B. 1995. V. 50, N 9. P. 1059–1075.
3. Laser Induced Breakdown Spectroscopy / A.W. Miziolek , V. Palleschi, I. Schechter (eds.). Cambridge University Press, 2006. 640 p.
4. Banba T., Hagiya H., Tamura Yu., Senoo M., Yonezawa Ch., Carter P.B. Chemical analysis of high-level radioactive waste glass by ICP-AES // Anal. Sci. 1998. V. 14, N 2. P. 389–394.
5. Cahoon E.M., Almirall J.R. Quantitative analysis of liquids from aerosols and microdrops using laser induced breakdown spectroscopy // Anal. Chem. 2012. V. 84, N 5. P. 2239–2244.
6. Aragón C., Aguilera J.A. Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods // Spectrochim. Acta Part B. 2008. V. 63, N 9. P. 893–916.
7. Noll R., Fricke-Begemann C., Brunk M., Connemann S., Meinhardt Ch., Scharun M., Strum V., Makowe J., Ghlen Ch.D. Laser-induced breakdown spectroscopy expands into industrial applications // Spectrochim. Acta Part B. 2014. V. 93. P. 41–51.
8. Unnikrishnan V.K., Nayak R., Aithal K., Kartha V.B., Santosh C., Gupta G.P., Suri B.M. Analysis of trace elements in complex matrices (soil) by Laser Induced Breakdown Spectroscopy (LIBS) // Anal. Methods. 2013. V. 5, N 5. P. 1294–1300.
9. Unnikrishnan V.K., Choudhari K.S., Kulkarni S.D., Nayak R., Kartha V.B., Santhosh C. Analytical pre­dictive capabilities of laser induced breakdown spectroscopy (LIBS) with principal component analysis (PCA) for plastic classification // RSC Adv. 2013. V. 3, N 48. P. 25872–25880.
10. Wiens R.C., Xiong Wan, Lasue J., Maurice S. Laser-induced breakdown spectroscopy in planetary science // Laser-Induced Breakdown Spectrosc. Elsevier, 2020. P. 441–471.
11. Cousin A., Forni O., Maurice S., Gasnault O. Laser induced breakdown spectroscopy library for the Martian environment // Spectrochim. Acta Part B. 2011. V. 66, N 11–12. P. 805–814.
12. Giakoumaki A., Melessanaki K., Anglos D. Laser-induced breakdown spectroscopy (LIBS) in archaeological science – applications and prospects // Anal. Bioanal. Chem. 2007. V. 387, N 3. P. 749–760.
13. Rodriguez-Celis E.M., Gornushkin I.B., Heitmann U.M., Almirall J.R., Smith B.W., Winefordner J.D., Omenetto N. Laser induced breakdown spectroscopy as a tool for discrimination of glass for forensic applications // Anal. Bioanal. Chem. 2008. V. 391, N 5. P. 1961–1968.
14. Rehse S.J. A review of the use of laser-induced breakdown spectroscopy for bacterial classification, quantification, and identification // Spectrochim. Acta Part B. 2019. V. 154. P. 50–69.
15. Michel A.P.M., Lawrence-Snyder M., Angel S.M., Chave A.D. Laser-induced breakdown spectroscopy of bulk aqueous solutions at oceanic pressures: Evaluation of key measurement parameters // Appl. Opt. 2007. V. 46, N 13. P. 2507–2515.
16. Golik S.S., Ilyin A.A., Babiy M.Yu., Biryukova Yu.S., Lisitsa V.V., Bukin O.A. Determination of iron in water solution by time-resolved femtosecond laser-induced breakdown spectroscopy // Plasma Sci. Technol. 2015. V. 17, N 11. P. 975.
17. Ильин А.А., Букин О.А., Буланов А.В., Нагорный И.Г., Голик С.С., Бауло Е.Н. Спектрально-временные характеристики плазмы, генерируемой на поверхности морской воды наносекундным лазерным импульсом // Оптика атмосф. и океана. 2009. Т. 22, № 7. С. 705–709; Il’in A.A., Bukin O.A., Bulanov A.V., Nagornyi I.G., Golik S.S., Baulo E.N. Spectral-temporal characteristics of plasma induced by a nanosecond laser pulse at the sea water surface // Atmos. Ocean. Opt. 2009. V. 22, N 5. P. 551–555.
18. Labutin T.A., Lednev V.N., Ilyin A.A., Popov A.M. Femtosecond laser-induced breakdown spectroscopy // J. Anal. At. Spectrom. 2016. V. 31, N 1. P. 90–118.
19. Xiu J., Zhong Sh., Hou H., Lu Yu., Zheng R. Quantitative determination of manganese in aqueous solutions and seawater by laser-induced breakdown spectroscopy (LIBS) using paper substrates // Appl. Spectrosc. 2014. V. 68, N 9. P. 1039–1045.
20. Tian Y., Li Y., Wang L., Huang F., Lu Yu., Guo J., Zheng R. Laser-induced plasma in water at high pressures up to 40 MPa: A time-resolved study // Opt. Express. 2020. V. 28, N 12. P. 18122–18130.
21. Ilyin A.A., Golik S.S. Femtosecond laser-induced breakdown spectroscopy of sea water // Spectrochim. Acta Part B. 2013. V. 87. P. 192–197.
22. Голик С.С., Букин О.А., Ильин А.А., Соколова Е.Б., Кульчин Ю.Н., Гальченко А.А. Определение пределов обнаружения элементов в воде методом фемтосекундной лазерно-искровой спектроскопии // Журн. прикл. спектроскоп. 2012. Т. 79, № 3. С. 488–492.
23. St-Onge L., Kwong E., Sabsabi M., Vadas E.B. Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy // J. Pharm. Biomed. Anal. 2004. V. 36, N 2. P. 277–284.
24. Cremers D.A., Radziemski L.J., Loree T.R. Spectrochemical analysis of liquids using the laser spark // Appl. Spectros. 1984. V. 38, N 5. P. 721–729.
25. Matsumoto A., Tamura A., Koda R., Fukami K., Ogata Yu.H., Nishi N., Thornton B., Sakka T. A calibration-free approach for on-site multi-element analysis of metal ions in aqueous solutions by electrodeposition-assisted underwater laser-induced breakdown spectroscopy // Spectrochim. Acta Part B. 2016. V. 118. P. 45–55.
26. Golik S.S., Ilyin A.A., Babiy M.Yu., Biryukova Yu.S., Agapova T.M., Myor A.Yu., Bukin O.A., Kulchin Yu.N. The influence of laser pulse repetition rate on the intensity of spectral lines in femtosecond laser-induced breakdown spectroscopy of a liquid // Tech. Phys. Lett. 2015. V. 41, N 11. P. 1044–1046.
27. Biryukova Y.S., Golik S.S., Ilyin A.A., Babiy M.Yu. Influence of energy and repetition rate of the femtosecond laser pulses on the spectral and temporal characteristics of plasma in laser induced breakdown spectroscopy of aqueous solutions // 22nd Intern. Sympos. Atmos. Ocean Opt.: Atmos. Phys. – Intern. Soc. Opt. Photon., 2016. V. 10035. P. 100352E.
28. Голик С.С., Ильин А.А., Колеснков А.В., Бабий М.Ю., Кульчин Ю.Н., Букин О.А. Влияние условий фокусировки лазерного излучения на интенсивность спектральных линий в методе фемтосекундной лазерной искровой спектроскопии жидкости // Письма в ЖТФ. 2013. Т. 39, № 15. С. 72–77.
29. Biryukova Y.S., Golik S.S., Ilyin A.A., Babiy M.Yu. Determination of the limits of detection of the elements in aqueous solutions by femtosecond LIBS depending on the laser pulse repetition rate // Frontiers in Ultrafast Opt.: Biomed., Scient., and Indust. Appl. XVII. – Intern. Soc. Opt. Photon., 2017. V. 10094. P. 100941R.
30. Sobral H., Sanginés R., Trujillo-Vázquez A. Detection of trace elements in ice and water by laser-induced breakdown spectroscopy // Spectrochim. Acta Part B. 2012. V. 78. P. 62–66.
31. Charfi B., Harith M.A. Panoramic laser-induced breakdown spectrometry of water // Spectrochim. Acta Part B. 2002. V. 57, N 7. P. 1141–1153.
32. Zhong S.L., Lu Yu., Kong W.-J., Cheng K., Zheng R. Quantitative analysis of lead in aqueous solutions by ultrasonic nebulizer assisted laser induced breakdown spectroscopy // Front. Phys. 2016. V. 11, N 4. P. 114202.
33. Chen Z., Li H., Liu M., Li R. Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates // Spectrochim. Acta Part B. 2008. V. 63, N 1. P. 64–68.
34. Xiu J., Zhong Sh., Hou H., Lu Yu., Zheng R. Quantitative determination of manganese in aqueous solutions and seawater by laser-induced breakdown spectroscopy (LIBS) using paper substrates // Appl. Spectrosc. 2014. V. 68, N 9. P. 1039–1045.
35. Yang X.Y., Hao X.Q., Li C.M., Li J.M., Yi R.X., Shen M., Li K.H., Guo L.B., Li X.Y., Lu Y.F., Zeng X.Y. Sensitive determinations of Cu, Pb, Cd, and Cr elements in aqueous solutions using chemical replacement combined with surface-enhanced laser-induced breakdown spectroscopy // Opt. Express. 2016. V. 24, N 12. P. 13410–13417.
36. Goueguel C., Mclntyre D.L., Jain J., Karamalidis A.K., Carson C. Matrix effect of sodium compounds on the determination of metal ions in aqueous solutions by underwater laser-induced breakdown spectroscopy // Appl. Opt. 2015. V. 54, N 19. P. 6071–6079.
37. Popov A.M., Drozdova A.N., Zaytsev S.M., Biryukova D.I., Zorov N.B., Labutin T.A. Rapid, direct determination of strontium in natural waters by laser-induced breakdown spectroscopy // J. Anal. At. Spectrom. 2016. V. 31, N 5. P. 1123–1130.
38. Lee D.H., Han S.-Ch., Kim T.-H., Yun J. Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy // Anal. Chem. 2011. V. 83, N 24. P. 9456–9461.
39. Sarkar A., Aggarwal S.K., Sasibhusan K., Alamelu D. Determination of sub-ppm levels of boron in ground water samples by laser induced breakdown spectroscopy // Microchim. Acta. 2010. V. 168, N 1–2. P. 65–69.
40. Gondal M.A., Hussain T. Determination of poisonous metals in wastewater collected from paint manufacturing plant using laser-induced breakdown spectroscopy // Talanta. 2007. V. 71, N 1. P. 73–80.
41. Apitz I., Vogel A. Material ejection in nanosecond Er: YAG laser ablation of water, liver, and skin // Appl. Phys. A. 2005. V. 81, N 2. P. 329–338.
42. Yang X., Guo L., Li J., Yi R., Hao Zh., Shen M., Zhou R., Li K., Li X., Lu Yo., Zeng X. Laser-induced breakdown spectroscopy of liquid solutions: A comparative study on the forms of liquid surface and liquid aerosol // Appl. Opt. 2016. V. 55, N 26. P. 7406–7411.
43. Hussein A.E., Diwakar P.K., Harilal S.S., Hassantein A. The role of laser wavelength on plasma generation and expansion of ablation plumes in air // J. Appl. Phys. 2013. V. 113, N 14. P. 143305.