Vol. 28, issue 10, article # 6

Smalikho I. N., Banakh V. A., Falits A. V., Rudi Yu. A. Determination of the turbulent energy dissipation rate from data measured by a “Stream Line” lidar in the atmospheric surface layer. // Optika Atmosfery i Okeana. 2015. V. 28. No. 10. P. 901-905. DOI: 10.15372/AOO20151006 [in Russian].
Copy the reference to clipboard
Abstract:

Possibility of determination of the turbulent energy dissipation rate from data measured by a 1.5-mm pulsed coherent Doppler lidar using the conical scanning of the probing beam under different atmospheric conditions has been studied experimentally. It is shown that from array of the radial velocities measured by this lidar in the atmospheric surface layer during 5 min one can estimate the dissipation rate with the relative error 20–30% under conditions of moderate and strong wind turbulence.

Keywords:

coherent Doppler lidar, sonic anemometer, wind, turbulence

References:

  1. O’Connor E.J., Illingworth A.J., Brooks I.M., Westbrook C.D., Hogan R.J., Davies F., Brooks B.J. A method for estimating the kinetic energy dissipation rate from a vertically pointing Doppler lidar, and independent evaluation from balloon-borne in situ measurements // J. Atmos. Ocean. Technol. 2010. V. 27, N 10. P. 1652–1664.
  2. Frehlich R.G., Meillier Y., Jensen M.L., Balsley B., Sharman R. Measurements of boundary layer profiles in urban environment // J. Appl. Meteorol. Climatol. 2006. V. 45, N 6. P. 821–837.
  3. Smaliho I.N., Banah V.A. Tochnost' ocenivanija skorosti dissipacii jenergii turbulentnosti iz izmerenij vetra impul'snym kogerentnym doplerovskim lidarom pri konicheskom skanirovanii zondirujushhim puchkom. Part I. Algoritm obrabotki lidarnyh dannyh // Optika atmosf. i okeana. 2013. V. 26, N 3. P. 213–219.
  4. Smaliho I.N., Banah V.A., Pichugina E.L., Brjuer A. Tochnost' ocenivanija skorosti dissipacii jenergii turbulentnosti iz izmerenij vetra impul'snym kogerentnym doplerovskim lidarom pri konicheskom skanirovanii zondirujushhim puchkom. Part II. Chislennyj i naturnyj jeksperimenty // Optika atmosf. i okeana. 2013. V. 26, N 3. P. 220–225.
  5. Smalikho I.N., Banakh V.A., Pichugina Y.L., Brewer W.A., Banta R.M., Lundquist J.K., Kelley N.D. Lidar investigation of atmosphere effect on a wind turbine wake // J. Atmos. Ocean. Technol. 2013. V. 30, N 11. P. 2554–2570.
  6. Banah V.A., Smaliho I.N. Kogerentnye doplerovskie vetrovye lidary v turbulentnoj atmosfere. Tomsk: Izd-vo IOA SO RAN, 2013. 304 p.
  7. Monin A.S., Jaglom A.M. Statisticheskaja gidromehanika. Part. 2. M.: Nauka, 1967. 720 p.
  8. Lamli Dzh., Panovskij G. Struktura atmosfernoj turbulentnosti. M.: Mir, 1966. 264 p.
  9. Kolmogorov A.N. Lokal'naja struktura turbulentnosti v neszhimaemoj vjazkoj zhidkosti pri ochen' bol'shih chislah Rejnol'dsa // Dokl. AN SSSR. 1941. V. 30, N 4. P. 299–303.
  10. Byzova N.L., Ivanov V.N., Garger E.K. Turbulentnost' v pogranichnom sloe atmosfery. L.: Gidrometeoizdat, 1989. 263 p.
  11. Ivanov V.N. Ispol'zovanie vysotnoj meteorologicheskoj machty IJeM dlja izuchenija pogranichnogo sloja atmosfery // Trudy IJeM. 1970. Issue. 12. P. 88–131.
  12. Volkovickaja Z.I., Ivanov V.N. Nizkochastotnaja granica inercionnogo intervala v nizhnem sloe atmosfery // Izv. AN SSSR. Fiz. atmosf. i okeana. 1967. V. 2, N 10. P. 1052–1061.
  13. Volkovickaja Z.I., Ivanov V.N. Dissipacija turbulentnoj jenergii v pogranichnom sloe atmosfery // Izv. AN SSSR. Fiz. atmosf. i okeana. 1970. V. 6, N 5. P. 435–444.
  14. Pierson G., Davies F., Collier C. An analysis of performance of the UFAM Pulsed Doppler lidar for the observing the boundary layer // J. Atmos. Ocean. Technol. 2009. V. 26, N 2. P. 240–250.
  15. Banah V.A., Smaliho I.N., Falic A.V., Belan B.D., Arshinov M.Ju., Antohin P.N. Sovmestnye radiozondovye i doplerovskie lidarnye izmerenija vetra v pogranichnom sloe atmosfery // Optika atmosf. i okeana. 2014. V. 27, N 10. P. 911–916.