Vol. 32, issue 07, article # 1

Chizhmakova I. S., Nikitin A. V. Potential energy surface of SF6. // Optika Atmosfery i Okeana. 2019. V. 32. No. 07. P. 511–515. DOI: 10.15372/AOO20190701 [in Russian].
Copy the reference to clipboard

For the first time, a 15-dimensional analytical form was obtained and the potential energy of the SF6 molecule in the ground electronic state was found ab initio. An optimal mesh of geometries was constructed, which, taking into account the full symmetry of the molecule, unambiguously determines the potential energy surface of the sixth order. Using the MP2 method with the cc-pVTZ base set, the potential energy surface of the fourth order was calculated.


potential energy surface, SF6, ocatahedral group


1. Jesse S., Pedraza A.J., Fowlkes J.D. Etching-enhanced ablation and the formation of a microstructure in silicon by laser irradiation in an SF6 atmosphere // J. Mater. Res. 2002. N 17. P. 1002–1013.
2. Johnstone W.M., Newell W.R. Absolute elastic differential cross sections for electron scattering from SF6 // J. Phys. B: At. Mol. Opt. Phys. 1991. N 24. P. 473–487.
3. Malik N.H., Qureshi A.H. A review of electrical breakdown in mixtures of SF6 and other gases // IEEE Trans. Electr. Insul. 1979. V. 14, N 1. Р. 11–13.
4. Hodnebrog O., Etminan M., Fuglestvedt J.S., Marston G., Myhre G., Nielsen C.J., Shine K.P., Wallington T.J. Global warming potentials and radiative efficiencies of halocarbons and related compounds: A comprehensive review // Rev. Geophys. 2013. V. 51, N 2. P. 300–378.
5. Ravishankara A.R., Solomon S., Turnipseed A.A., Warren R.F. Atmospheric lifetimes of long-lived halogenated species // Science. 1993. V. 259, N 5092. P. 194–199.
6. Earth System Research Laboratory Global Monitoring Division [Electronic resource]. URL: http:/​/​www.esrl. noaa.gov/​gmd/​hats/​data.html (last access: 17.03.2019).
7. Rey M., Chizhmakova I.S., Nikitin A.V., Tyuterev V.G. Understanding global infrared opacity and hot bands of greenhouse molecules with low vibrational modes from first-principles calculations: The case of CF4 // Phys. Chem. Chem. Phys. 2018. V. 20. P. 21008–21033.

  1. Boudon V., Bermejo D. First high-resolution Raman spectrum and analysis of the n5 // J. Mol. Spectrosc. 2002. V. 213. P. 139–144.

  2. Boudon V., Pierre G., Burger H. High-resolution spectroscopy and analysis of the n4 Bending Region of SF6 near 615 cm-1 // J. Mol. Spectrosc. 2001. V. 205. P. 304–311.

  3. Nagarajan G., Brinkley D.C. Statistical thermodynamics enthalpy, free energy, entropy, and heat capacity of some hexafluorides of octahedral symmetry // Z. Naturforsch. 1971. P. 1658–1665.

  4. Spiridonov V.P., Tarasov Y.I., Novosadov B.K., Nikitin O.Y., Maslov I.V. A practical method for diffraction analysis of equilibrium geometries molecules without refined force fields // J. Mol. Struct. 1997. P. 463–470.

  5. Werner H.-J., Knowles P.J., Knizia G., Manby F.R., Schütz M., Celani P., Györffy W., Kats D., Korona T., Lindh R., Mitrushenkov A., Rauhut G., Shamasundar K.R., Adler T.B., Amos R.D., Bennie S.J., Bernhardsson A., Berning A., Cooper D.L., Deegan M.J.O., Dobbyn A.J., Eckert F., Goll E., Hampel C., Hesselmann A., Hetzer G., Hrenar T., Jansen G., Köppl C., Lee S.J.R., Liu Y., Lloyd A.W., Ma Q., Mata R.A., May A.J., McNicholas S.J., Meyer W., Miller T.F. III, Mura M.E., Nicklaß A., O'Neill D.P., Palmieri R.A., Peng D., Pflüger K., Pitzer R., Reiher M., Shiozaki T., Stoll H., Stone A.J., Tarroni R., Thorsteinsson T., Wang M., Welborn M. MOLPRO, version 2009.1, a package of ab initio programs. URL: http://www.molpro.net (last access: 17.03.2019).

  6. Bartlett R.J. Many-body perturbation theory and coupled cluster theory for electron correlation in molecules // Ann. Rev. Phys. Chem. 1981. V. 32. P. 359–401.

  7. Head-Gordon M., Pople J.A., Frisch M.J. MP2 energy evaluation by direct methods // Chem. Phys. Lett. 1988. V. 153, N 6. P. 503–506.

  8. Eisfeld W. Highly accurate determination of the electron affinity of SF6 and analysis of structure and photodetachment spectrum of SF6 // J. Chem. Phys. 2011. N 134. P. 054303.

  9. Miller B.R., Fink M. Mean amplitudes of vibration of SF6 and intramolecular multiple scattering // J. Chem. Phys. 1981. N 75. P. 5326–5328.

  10. Nikitin A.V., Rey M., Tyuterev V.G. Rotational and vibrational energy levels of methane calculated from a new potential energy surface // Chem. Phys. Lett. 2011. V. 501. P. 179–186.

  11. Nikitin A.V. Vychislenie kolebatel'nykh urovnej energii simmetrichnykh molekul iz poverkhnosti potentsial'noj energii // Optika atmosf. i okeana. 2015. V. 28, N 5. P. 379–390.

  12. Zhilinskii B.I., Perevalov V.I., Tyuterev V.G. Method of irreducible tensorial operators in the theory of molecular spectra. Novosibirsk: Nauka, 1987. P. 1–13.

  13. Halonen L., Child M.S. A local mode model for tetrahedral molecules // Mol. Phys. 1982. V. 46. P. 239–255.

  14. Schatz P.N., Hornig D.F. Bond moments and derivatives in CF4, SiF4, and SF6 from infrared intensities // J. Chem. Phys. 1953. V. 21, N 9. P. 1516–1530.

  15. Fernandez-Gomez M., Lopez-Gonzalez J.J. Calculation of internal valence force constants for XY6(Oh) Octahedral molecules // J. Mol. Struct. 1990. V. 220. P. 287–300.

  16. Pistorius T.C.W.F. Potential field and force constants of Octahedral molecules // J. Chem. Phys. 1958. V. 29, N 6. P. 1328–1332.

  17. Tyuterev V.G., Tashkun S.A., Rey M., Kochanov R.V., Nikitin A.V., Delahaye T. Accurate spectroscopic models for methane polyads derived from a potential energy surface using high-order contact transformations // J. Phys. Chem. 2013. V. 117. P. 13779–13805.

  18. Rey M., Nikitin A.V., Babikov Y., Tyuterev V.G. TheoReTS – An information system for theoretical spectra based on variational predictions from molecular potential energy and dipole moment surfaces // J. Mol. Spectrosc. 2016. V. 327. P. 138–158.