Content of issue 11, volume 32, 2019

1. Veretennikov V. V., Men'shchikova S. S., Uzhegov V. N. Variability of the aerosol microstructure under the forest fire smoke effect retrieved from spectral characteristics of light extinction in the near-surface air layer and the atmospheric column. P. 879-888
Bibliographic reference:
Veretennikov V. V., Men'shchikova S. S., Uzhegov V. N. Variability of the aerosol microstructure under the forest fire smoke effect retrieved from spectral characteristics of light extinction in the near-surface air layer and the atmospheric column. // Optika Atmosfery i Okeana. 2019. V. 32. No. 11. P. 879-888. DOI: 10.15372/AOO20191101 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Veretennikov V.V., Men’shchikova S.S. and Uzhegov V.N. Variations in Aerosol Microstructure under the Influence of Smokes from Forest Fires according to Inversion of Spectral Extinction Characteristics in the Near-Surface Layer and in Vertical Atmospheric Column // Atmospheric and Oceanic Optics, 2020, V. 33. No. 02. pp. 161–171.
Copy the reference to clipboard    Open the english version
2. Luzhetskaya A. P., Poddubnyi V. A. Features of temporal variability of aerosol optical depth in the Middle Urals according to long-term observations at the urban and background sites. P. 889-895
Bibliographic reference:
Luzhetskaya A. P., Poddubnyi V. A. Features of temporal variability of aerosol optical depth in the Middle Urals according to long-term observations at the urban and background sites. // Optika Atmosfery i Okeana. 2019. V. 32. No. 11. P. 889-895. DOI: 10.15372/AOO20191102 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Luzhetskaya A.P. and Poddubny V.A. Specific Features of Time Variations in Aerosol Optical Depth in the Middle Urals Using Multiyear Observations in Urban and Background Regions // Atmospheric and Oceanic Optics, 2020, V. 33. No. 02. pp. 172–178.
Copy the reference to clipboard    Open the english version
3. Romanovskii O. A., Sadovnikov S. A., Kharchenko O. V., Yakovlev S. V. Remote analysis of methane content in the atmosphere by an IR DIAL lidar system in the 3300–3430-nm spectral range. P. 896–901
Bibliographic reference:
Romanovskii O. A., Sadovnikov S. A., Kharchenko O. V., Yakovlev S. V. Remote analysis of methane content in the atmosphere by an IR DIAL lidar system in the 3300–3430-nm spectral range. // Optika Atmosfery i Okeana. 2019. V. 32. No. 11. P. 896–901. DOI: 10.15372/AOO20191103 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Romanovskii O.A., Sadovnikov S.A., Kharchenko O.V. and Yakovlev S.V. Remote Analysis of Methane Concentration in the Atmosphere with an IR Lidar System in the 3300–3430 nm Spectral Range // Atmospheric and Oceanic Optics, 2020, V. 33. No. 02. pp. 188–194.
Copy the reference to clipboard    Open the english version
4. Tartakovsky V. A., Cheredko N. N., Maksimov V. G. Calculation of mid-latitude temperature by linear transformation of astronomical insolation. P. 902–907
Bibliographic reference:
Tartakovsky V. A., Cheredko N. N., Maksimov V. G. Calculation of mid-latitude temperature by linear transformation of astronomical insolation. // Optika Atmosfery i Okeana. 2019. V. 32. No. 11. P. 902–907. DOI: 10.15372/AOO20191104 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Tartakovsky V.A., Cheredko N.N. and Maximov V.G. Determination of the Average Latitudinal Temperature by Linear Transformation of Astronomical Insolation // Atmospheric and Oceanic Optics, 2020, V. 33. No. 02. pp. 210–215.
Copy the reference to clipboard    Open the english version
5. Pustovalov K. N., Kharyutkina E. V., Korolkov V. A., Nagorsky P. M. Variability in resources of solar and wind energy in the Russian sector of Arctic. P. 908–914
Bibliographic reference:
Pustovalov K. N., Kharyutkina E. V., Korolkov V. A., Nagorsky P. M. Variability in resources of solar and wind energy in the Russian sector of Arctic. // Optika Atmosfery i Okeana. 2019. V. 32. No. 11. P. 908–914. DOI: 10.15372/AOO20191105 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Pustovalov K.N., Kharyutkina E.V., Korolkov V.A. and Nagorskiy P.M. Variations in Resources of Solar and Wind Energy in the Russian Sector of the Arctic // Atmospheric and Oceanic Optics, 2020, V. 33. No. 03. pp. 282–288.
Copy the reference to clipboard    Open the english version
6. Alexeeva M. N., Raputa V. F., Yaroslavtseva T. V., Yashchenko I. G. Estimation of atmospheric pollution from gas flaring according to data of remote observations of flare thermal radiation. P. 915–919
Bibliographic reference:
Alexeeva M. N., Raputa V. F., Yaroslavtseva T. V., Yashchenko I. G. Estimation of atmospheric pollution from gas flaring according to data of remote observations of flare thermal radiation. // Optika Atmosfery i Okeana. 2019. V. 32. No. 11. P. 915–919. DOI: 10.15372/AOO20191106 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Alekseeva M.N., Raputa V.F., Yaroslavtseva T.V. and Yashchenko I.G. Estimation of Air Pollution due to Gas Flaring from Remote Observations of Flare Thermal Radiation // Atmospheric and Oceanic Optics, 2020, V. 33. No. 03. pp. 289–294.
Copy the reference to clipboard    Open the english version
7. Peremitina T. O., Yashchenko I. G. Evaluation of the vegetation dynamics of oil and gas deposits in Tomsk region with the use of satellite data. P. 920–924
Bibliographic reference:
Peremitina T. O., Yashchenko I. G. Evaluation of the vegetation dynamics of oil and gas deposits in Tomsk region with the use of satellite data. // Optika Atmosfery i Okeana. 2019. V. 32. No. 11. P. 920–924. DOI: 10.15372/AOO20191107 [in Russian].
Copy the reference to clipboard
8. Shishigin S. A. Investigation of the method for correction of gas content in air by the outgoing radiation of the atmosphere. P. 925–929
Bibliographic reference:
Shishigin S. A. Investigation of the method for correction of gas content in air by the outgoing radiation of the atmosphere. // Optika Atmosfery i Okeana. 2019. V. 32. No. 11. P. 925–929. DOI: 10.15372/AOO20191108 [in Russian].
Copy the reference to clipboard
9. Karavaev D. M., Shchukin G. G. Study on variations in water vapor and cloud liquid using microwave radiometry. P. 930–935
Bibliographic reference:
Karavaev D. M., Shchukin G. G. Study on variations in water vapor and cloud liquid using microwave radiometry. // Optika Atmosfery i Okeana. 2019. V. 32. No. 11. P. 930–935. DOI: 10.15372/AOO20191109 [in Russian].
Copy the reference to clipboard
10. Rubinshtein K. G., Gubenko I. M., Ignatov R. Yu., Tikhonenko N. D., Yusupov Yu. I. Experiments on lightning data assimilation gathered from lightning detection network. P. 936–941
Bibliographic reference:
Rubinshtein K. G., Gubenko I. M., Ignatov R. Yu., Tikhonenko N. D., Yusupov Yu. I. Experiments on lightning data assimilation gathered from lightning detection network. // Optika Atmosfery i Okeana. 2019. V. 32. No. 11. P. 936–941. DOI: 10.15372/AOO20191110 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Rubinstein K.G., Gubenko I.M., Ignatov R.Yu., Tikhonenko N.D. and Yusupov Yu.I. Experiments on Lightning Detection Network Data Assimilation // Atmospheric and Oceanic Optics, 2020, V. 33. No. 02. pp. 219–228.
Copy the reference to clipboard    Open the english version
11. Krivenok L. A., Suvorov G. G., Avilov V. K., Sirin A. A. Eddy covariance measurement of CO2, CH4, and H2O fluxes: Use of a mobile tower and taking into account the changing fetch. P. 942–950
Bibliographic reference:
Krivenok L. A., Suvorov G. G., Avilov V. K., Sirin A. A. Eddy covariance measurement of CO2, CH4, and H2O fluxes: Use of a mobile tower and taking into account the changing fetch. // Optika Atmosfery i Okeana. 2019. V. 32. No. 11. P. 942–950. DOI: 10.15372/AOO20191111 [in Russian].
Copy the reference to clipboard
12. Information. P. 951–954