Content of issue 07, volume 32, 2019

1. Chizhmakova I. S., Nikitin A. V. Potential energy surface of SF6. P. 511–515
Bibliographic reference:
Chizhmakova I. S., Nikitin A. V. Potential energy surface of SF6. // Optika Atmosfery i Okeana. 2019. V. 32. No. 07. P. 511–515. DOI: 10.15372/AOO20190701 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Chizhmakova I.S. and Nikitin A.V. Potential Energy Surface of SF6 // Atmospheric and Oceanic Optics, 2019, V. 32. No. 06. pp. 613–618.
Copy the reference to clipboard    Open the english version
2. Solodov A. A., Petrova T. M., Ponomarev Yu. N., Solodov A. M., Shаlygin A. S. Rotational dependence of line half-windth for fundamental band of CO2 confined in nanoporous aerogel. P. 516–518
Bibliographic reference:
Solodov A. A., Petrova T. M., Ponomarev Yu. N., Solodov A. M., Shаlygin A. S. Rotational dependence of line half-windth for fundamental band of CO2 confined in nanoporous aerogel. // Optika Atmosfery i Okeana. 2019. V. 32. No. 07. P. 516–518. DOI: 10.15372/AOO20190702 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Solodov A.A., Petrova T.M., Ponomarev Yu.N., Solodov A.M. and Shalygin A.S. Rotational Dependence of Line Half-width for 0 0 0 11–0 0 0 01 Fundamental Band of CO2 Confined in Aerogel Nanopores // Atmospheric and Oceanic Optics, 2019, V. 32. No. 06. pp. 619–621.
Copy the reference to clipboard    Open the english version
3. Ostrikov V. N., Plakhotnikov O. V., Kirienko A. V. Estimation of the spectral resolution of an imaging spectrometer from Fraunhofer's lines with the MODTRAN atmospheric model. P. 519–524
Bibliographic reference:
Ostrikov V. N., Plakhotnikov O. V., Kirienko A. V. Estimation of the spectral resolution of an imaging spectrometer from Fraunhofer's lines with the MODTRAN atmospheric model. // Optika Atmosfery i Okeana. 2019. V. 32. No. 07. P. 519–524. DOI: 10.15372/AOO20190703 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Ostrikov V.N., Plakhotnikov O.V. and Kirienko A.V. Estimation of Spectral Resolution of Imaging Spectrometers from Fraunhofer Lines with the MODTRAN Atmospheric Model // Atmospheric and Oceanic Optics, 2019, V. 32. No. 06. pp. 622–627.
Copy the reference to clipboard    Open the english version
4. Samoilova S. V. Simultaneous reconstruction of the complex refractive index and the particle size distribution function from the lidar data: examination of the algorithms. P. 525–538
Bibliographic reference:
Samoilova S. V. Simultaneous reconstruction of the complex refractive index and the particle size distribution function from the lidar data: examination of the algorithms. // Optika Atmosfery i Okeana. 2019. V. 32. No. 07. P. 525–538. DOI: 10.15372/AOO20190704 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Samoilova S.V. Simultaneous Reconstruction of the Complex Refractive Index and the Particle Size Distribution Function from Lidar Measurements: Testing the Developed Algorithms // Atmospheric and Oceanic Optics, 2019, V. 32. No. 06. pp. 628–642.
Copy the reference to clipboard    Open the english version
5. Panchenko M. V., Pol'kin V. V., Pol'kin Vas. V., Kozlov V. S., Yausheva E. P., Shmargunov V. P. The size distribution of the “dry matter” of particles in the surface air layer in suburbs of Tomsk within the empirical classification of “aerosol weather” types. P. 539–547
Bibliographic reference:
Panchenko M. V., Pol'kin V. V., Pol'kin Vas. V., Kozlov V. S., Yausheva E. P., Shmargunov V. P. The size distribution of the “dry matter” of particles in the surface air layer in suburbs of Tomsk within the empirical classification of “aerosol weather” types. // Optika Atmosfery i Okeana. 2019. V. 32. No. 07. P. 539–547. DOI: 10.15372/AOO20190705 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Panchenko M.V., Pol’kin V.V., Pol’kin Vas.V., Kozlov V.S., Yausheva E.P. and Shmargunov V.P. Size Distribution of Dry Matter of Particles in the Surface Atmospheric Layer in the Suburban Region of Tomsk within the Empirical Classification of Aerosol Weather Types // Atmospheric and Oceanic Optics, 2019, V. 32. No. 06. pp. 655–662.
Copy the reference to clipboard    Open the english version
6. Kabanov D. M., Sakerin S. M., Turchinovich Yu. S. Interannual and seasonal variations in the atmospheric aerosol optical depth near Tomsk (1995–2018). P. 548–555
Bibliographic reference:
Kabanov D. M., Sakerin S. M., Turchinovich Yu. S. Interannual and seasonal variations in the atmospheric aerosol optical depth near Tomsk (1995–2018). // Optika Atmosfery i Okeana. 2019. V. 32. No. 07. P. 548–555. DOI: 10.15372/AOO20190706 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Kabanov D.M., Sakerin S.M. and Turchinovich Yu.S. Interannual and Seasonal Variations in the Atmospheric Aerosol Optical Depth in the Region of Tomsk (1995–2018) // Atmospheric and Oceanic Optics, 2019, V. 32. No. 06. pp. 663–670.
Copy the reference to clipboard    Open the english version
7. Bazhenov O. E., El'nikov A. V., Sysoev S. M. Total ozone content over Tomsk in 1994–2017: results of statistical analysis. P. 556–561
Bibliographic reference:
Bazhenov O. E., El'nikov A. V., Sysoev S. M. Total ozone content over Tomsk in 1994–2017: results of statistical analysis. // Optika Atmosfery i Okeana. 2019. V. 32. No. 07. P. 556–561. DOI: 10.15372/AOO20190707 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Bazhenov O.E., Elnikov A.V. and Sysoev S.M. Total Ozone Content over Tomsk in 1994–2017: Results of Statistical Analysis // Atmospheric and Oceanic Optics, 2019, V. 32. No. 06. pp. 680–685.
Copy the reference to clipboard    Open the english version
8. Smalikho I. N. Taking into account of the ground effect on aircraft wake vortices when evaluating their circulation from lidar measurements. P. 562–575
Bibliographic reference:
Smalikho I. N. Taking into account of the ground effect on aircraft wake vortices when evaluating their circulation from lidar measurements. // Optika Atmosfery i Okeana. 2019. V. 32. No. 07. P. 562–575. DOI: 10.15372/AOO20190708 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Smalikho I.N. Taking into Account the Ground Effect on Aircraft Wake Vortices When Estimating Their Circulation from Lidar Measurements // Atmospheric and Oceanic Optics, 2019, V. 32. No. 06. pp. 686–700.
Copy the reference to clipboard    Open the english version
9. Tatur V. V., Tikhomirov A. A., Abramochkin A. I., Korolev B. V., Мutnitskii N. G. Mercury vapor analyzer in atmospheric air based on mercury capillary lamp with natural isotope composition. P. 576–580
Bibliographic reference:
Tatur V. V., Tikhomirov A. A., Abramochkin A. I., Korolev B. V., Мutnitskii N. G. Mercury vapor analyzer in atmospheric air based on mercury capillary lamp with natural isotope composition. // Optika Atmosfery i Okeana. 2019. V. 32. No. 07. P. 576–580. DOI: 10.15372/AOO20190709 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Tatur V.V., Tikhomirov A.A., Abramochkin A.I., Korolev B.V. and Mutnitskii N.G. Analyzer of Mercury Vapors in Atmospheric Air Based on a Mercury Capillary Lamp with Natural Isotope Composition // Atmospheric and Oceanic Optics, 2019, V. 32. No. 06. pp. 701–705.
Copy the reference to clipboard    Open the english version
10. Fedorov V. F., Trigub M. V., Sеmenov K. Yu., Shiyanov D. V., Vlasov V. V. The construction of the metal vapor active element. P. 581–584
Bibliographic reference:
Fedorov V. F., Trigub M. V., Sеmenov K. Yu., Shiyanov D. V., Vlasov V. V. The construction of the metal vapor active element. // Optika Atmosfery i Okeana. 2019. V. 32. No. 07. P. 581–584. DOI: 10.15372/AOO20190710 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Fedorov V.F., Trigub M.V., Semenov K.Yu., Shiyanov D.V. and Vlasov V.V. Metal Vapor Active Element Design // Atmospheric and Oceanic Optics, 2019, V. 32. No. 06. pp. 706–709.
Copy the reference to clipboard    Open the english version
11. Sosnin E. A., Baksht E. H., Kuznetsov V. S., Panarin V. A., Skakun V. S., Tarasenko V. F. Laboratory modeling of blue jets with apokamp discharge in Hz frequency range. P. 585–590
Bibliographic reference:
Sosnin E. A., Baksht E. H., Kuznetsov V. S., Panarin V. A., Skakun V. S., Tarasenko V. F. Laboratory modeling of blue jets with apokamp discharge in Hz frequency range. // Optika Atmosfery i Okeana. 2019. V. 32. No. 07. P. 585–590. DOI: 10.15372/AOO20190711 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Sosnin E.A., Baksht E.Kh., Kuznetsov V.S., Panarin V.A., Skakun V.S. and Tarasenko V.F. Laboratory Simulation of Blue Jets with Apokampic Discharge in the Hz Frequency Range // Atmospheric and Oceanic Optics, 2019, V. 32. No. 06. pp. 710–715.
Copy the reference to clipboard    Open the english version
12. Kolosov V. V., Levitsky M. E., Petukhov T. D., Simonova G. V. Formation of feedback loop for phase control of a fiber laser array. P. 591–598
Bibliographic reference:
Kolosov V. V., Levitsky M. E., Petukhov T. D., Simonova G. V. Formation of feedback loop for phase control of a fiber laser array. // Optika Atmosfery i Okeana. 2019. V. 32. No. 07. P. 591–598. DOI: 10.15372/AOO20190712 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Kolosov V.V., Levitskii M.E., Petukhov T.D. and Simonova G.V. Formation of the Feedback Loop for Phase Control of a Fiber Laser Array // Atmospheric and Oceanic Optics, 2019, V. 32. No. 06. pp. 716–732.
Copy the reference to clipboard    Open the english version