Vol. 32, issue 08, article # 4

Klimeshina T. E., Rodimova O. B. Calculation of H2O continuum absorption in IR-region based on Burch’s measurements. // Optika Atmosfery i Okeana. 2019. V. 32. No. 08. P. 628–632. DOI: 10.15372/AOO20190804 [in Russian].
Copy the reference to clipboard
Abstract:

The results of calculation of continuum absorption coefficients in IR H2O spectra in 2400–10000 cm-1 spectral region are presented. The spectral line contour used in the calculation was obtained in the frame of asymptotic line wing theory and contains parameters of both classic and quantum potentials. Parameters of the classic potential were taken from absorption calculations in 8–12 mm region. Parameters of the quantum potential were derived from fitting to Burch’s data in 2400–2800 cm-1 region. Calculated data in the H2O transparency windows are consistent with CRDS measurement data and with high temperature Fourier-measurement data.

Keywords:

water vapour, continuum absorption, Burch continuum, FTIR measurements, СRDS measurements

References:

  1. Grant W.B. Water vapor absorption coefficients in the 8–13 mm spectral region: A critical review // Appl. Opt. 1990. V. 29, N 4. P. 451–462.
  2. Ptashnik I.V., Shine K.P., Vigasin A.A. Water vapour self-continuum and water dimers: 1. Analysis of recent work // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 1286–1303.
  3. Tret'yakov M.YU., Koshelev M.A., Serov E.A., Parshin V.V., Odintsova T.A., Bubnov G.M. Dimer vody i atmosfernyj kontinuum // Uspehi fiz. nauk. 2014. V. 184, N 11. P. 1199–1215.
  4. Burch D.E., Gryvnak D.A., Pembrook J.D. Investigation of the absorption of infrared radiation by atmospheric gases: Water, nitrogen, nitrous oxide. Report AFCRL-71-0124. U-4897. 1971.
  5. Burch D.E. Continuum absorption by atmospheric H2O // Proc. SPIE. 1981. V. 277. P. 28–39.
  6. Burch D.E., Alt R.L. Continuum absorption by H2O in the 700–1200 cm-1 and 2400–2800 cm-1 windows. Report AFGL-TR-84-0128. 1984. 31 p.
  7. Shine K.P., Campargue A., Mondelain D., McPheat R.A., Ptashnik I.V., Weidmann D. The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases // J. Mol. Spectrosc. 2016. V. 327. P. 193–208.
  8. Lechevallier L., Vasilchenko S., Grilli R., Mondelain D., Romanini D., Campargue A. The water vapour self-continuum absorption in the infrared atmospheric windows: New laser measurements near 3.3 and 2.0 mm // Atmos. Meas. Tech. 2018. V. 11. P. 2159–2171.
  9. Bicknell W.E., Cecca S.D., Griffin M.K. Search for low-absorption regimes in the 1.6 and 2.1 mm atmospheric windows // J. Direct. Energy. 2006. V. 2. P. 151–161.
  10. Watkins W.R., White K.O., Bower L.R., Sojka B.Z. Pressure dependence of the water vapor continuum absorption in the 3.5–4.0 mm region // Appl. Opt. 1979. V. 18, N 8. P. 1149–1160.
  11. Ma Q., Tipping R. H., Leforestier C. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. I. Far wings of allowed lines // J. Chem. Phys. 2008. V. 128. P. 124313.
  12. Rodimova O.B. Kontur spektral'noj linii i pogloshchenie v oknah prozrachnosti atmosfery // Optika atmosf. i okeana. 2015. V. 28, N 5. P. 460–473.
  13. Rosenkranz P.W. Pressure broadening of rotational bands. I. A statistical theory // J. Chem. Phys. 1985. V. 83, N 12. P. 6139–6144.
  14. Gordov E.P., Tvorogov S.D. Metod poluklassicheskogo predstavleniya kvantovoj teorii. Novosibirsk: Nauka, 1984. 169 p.
  15. Klimeshina T.E., Bogdanova Yu.V., Rodimova O.B. Kontinual'noe pogloshchenie vodyanym parom v oknah prozrachnosti atmosfery 8–12 i 3–5 mm // Optika atmosf. i okeana. 2011. V. 24, N 9. P. 765–769; Klimeshina T.E., Bogdanova Y.V., Rodimova O.B. Continuum absorption by water vapor in the 8–12 and 3–5 mm atmospheric transparency windows // Atmos. Ocean. Opt. 2012. V. 25, N 1. P. 71–76.
  16. Klimeshina T.E., Rodimova O.B. Temperature dependence of the water vapor continuum absorption in the 3–5 mm spectral region // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 119. P. 77–83.
  17. Bogdanova J.V., Rodimova O.B. Role of diffusion in the violation of the long-wave approximation in line wings // Intern. J. Quant. Chem. 2012. V. 112, iss. 17. P. 2924–2931 .
  18. Klimeshina T.E. Raschet koeffitsienta pogloshcheniya v oknah prozrachnosti atmosfery // Diplomnaya rabota. 2010. Tomskij Gosudarstvennyj universitet. MMF. 72 p.
  19. Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements // J. Geophys. Res. 2011. V. 116. N 16305, 16 p.
  20. Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R., Williams R.G. Laboratory measurements of the water vapour continuum in the 1200–8000 cm-1 region between 293 and 351 K // J. Geophys. Res. 2009. V. 114. D21301.
  21. Mondelain D., Aradj A., Kassi S., Campargue A. The water vapour self-continuum by CRDS at room temperature in the 1.6 mm transparency window // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 381–391.
  22. Mondelain D., Manigand S., Kassi S., Campargue A. Temperature dependence of the water vapor self-continuum by cavity ring-down spectroscopy in the 1.6 mm transparency window // J. Geophys. Res.: Atmos. 2014. V. 119. P. 5625–5639.
  23. Campargue A., Kassi S., Mondelain D., Vasilchenko S., Romanini D. Accurate laboratory determination of the near-infrared water vapor self-continuum: A test of the MT_CKD model // J. Geophys. Res.: Atmos. 2016. V. 121. P. 13180–13203.
  24. Richard L., Vasilchenko S., Mondelain D., Ventrillard I., Romanini D., Campargue A. Water vapor self-continuum absorption measurements in the 4.0 and 2.1 mm transparency windows // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 201. P. 171–179.
  25. Baranov Y.I., Lafferty W.J. The water-vapor continuum and selective absorption in the 3–5 mm spectral region at temperatures from 311 to 363 K // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 1304–1313.
  26. Bogdanova Ju.V., Rodimova O.B. Calculation of water vapor absorption in a broad temperature interval // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, N 15. P. 2298–2307.