Vol. 32, issue 12, article # 6

Syrneva A. S., Ayrapetyan V. S. Design of a frequency filter on the basis of the total internal reflection phenomenon. // Optika Atmosfery i Okeana. 2019. V. 32. No. 12. P. 986–989. DOI: 10.15372/AOO20191206 [in Russian].
Copy the reference to clipboard
Abstract:

The results of experimental study of characteristics of a frequency filter designed on the basis of total internal reflection phenomenon are presented. The spectral width of semiconductor laser radiation in the visible region measured with this frequency filter two-fold narrows (from 18 to 10 cm-1 after passing through the frequency filter).

Keywords:

frequency filter, total internal reflection phenomenon, bandwidth, interference pattern, radiation spectrum

References:

  1. Ginzburg N.S., Zaslavsky V.Yu. Short-wave sectioned free-electron masers with Bragg resonators based on the traveling and quasi-critical wave coupling // Radiophys. Quantum. Electron. 2009. V. 52, iss. 8. P. 557–563.
  2. Wilson K.A. Whispering Gallery Mode Resonator Biosensors // Encyclopedia of Nanotechnology. 2016. P. 4387–4401.
  3. Noto M., Vollmer F., Keng D., Teraoka I. Nanolayer characterization through wavelength multiplexing of a microsphere resonator // Opt. Lett. V. 30, iss. 5. P. 510–512.
  4. Ashkenazi S., Chao C.-Y., Guo L.J. Ultrasound detection using polymer microring optical resonator // Appl. Phys. Lett. 2004. V. 85. P. 5418–5420.
  5. Birks T.A., Knight J.C., Dimmick T.E. High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment // IEEE Photon. Technol. Lett. 2000. V. 12, iss. 2. P. 182–184.
  6. White I.M., Oveys H., Fan X., Smith T.L., Zhang J. Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides // Appl. Phys. Lett. 2006. V. 89. P. 191106–191106-3.
  7. Vahala K.J. Optical microcavities // Nature. 2003. V. 424. P. 839–846.
  8. Armani D.K., Kippenberd T.J., Spillane S.M., Vahala K.J. Ultra-high-Q toroid microcavity on a chip // Nature. 2003. V. 421. P. 925–928.
  9. Opticheskij rezonator: Pat. 2 455 669. Russia, MPK6, G02F 1/01, H01S 3/08, G02B 5/00. Chesnokov V.V., Chesnokov D.V., Syrneva A.S.; SGGA. 2010143257/28; Zayavl. 21.01.2010; Opubl. 10.07.12. Byul. N 19.
  10. Syrneva A.S. Kraevoj effekt v fil'trah teragertsovogo diapazona, ispol'zuyushchih narushennoe polnoe vnutrennee otrazhenie / A.S. Syrneva (red.). // Cb. materialov III Mezhdunar. kongr. «GEO-Sibir'-2010». Novosibirsk, 2010. V. 4., Pt. 1. P. 214–220.
  11. Chesnokov V.V., Syrneva A.S., Chesnokov D.V. Opticheskie rezonatory polnogo vnutrennego otrazheniya s begushchej volnoj // Cb. materialov mezhdunar. konf. «Aktual'nye problemy elektronnogo priborostroeniya APEP». Novosibirsk, 2010. V. 7. P. 95–97.
  12. Kolomijtsov Yu.V. Interferometry. Osnovy inzhenernoj teorii, primenenie / Yu.V. Kolomijtsov (red.). L.: Mashinostroenie, 1976. 296 с.
  13. Lebedeva V.V. Eksperimental'naya optika / V.V. Lebedeva (red.). M.: Izd-vo Mosk. un-ta, 1994. 352 p.
  14. Churikov V.A. Kol'tsevoj rezonator dlya rentgenovskogo lazera na zerkalah skol'zyashchego padeniya // Optika atmosf. i okeana. 2002. V. 15, N 3. P. 271–274.
  15. Makogon M.M., Poplavskij Yu.A., Serdyukov V.I. Selektivnyj lazernyj rezonator s sostavnymi difraktsionnymi reshetkami // Optika atmosf. i okeana. 1999. V. 12, N 2. P. 166–169.