Vol. 33, issue 05, article # 1

Romashenko O. P., Kornev A. S., Zon B. A. Laser absorption in the atmosphere of Titan. // Optika Atmosfery i Okeana. 2020. V. 33. No. 05. P. 329–333. DOI: 10.15372/AOO20200501 [in Russian].
Copy the reference to clipboard
Abstract:

We derive general formulas for the extinction coefficient (in the Beer–Lambert–Bouguer law) of laser radiation in the atmosphere taking into account nonlinear effects and significantly differing from the results of linear optics. We perform specific calculations for the atmosphere of Titan. We demonstrate that taking into account the close-to-real dependence of atmospheric gas concentration on altitude leads to a noticeable difference in the altitude dependence of the extinction coefficient from the results obtained using the barometric formula. We also give estimates of the extinction coefficient in the atmosphere of Triton.

Keywords:

atmosphere of Titan, laser radiation, extinction coefficient, tunnel ionization

References:

  1. Lindal G.F., Wood G.E., Hotz H.B., Sweetnam D.N., Eshleman V.R., Tyler G.L. The atmosphere of Titan: An analysis of the Voyager 1 radio occultation measurements // Icarus. 1983. V. 53, N 2. P. 348–363.
  2. Hörst S.M. Titan's atmosphere and climate // J. Geophys. Res. Planets. 2017. V. 122, N 3. P. 432–482.
  3. Cours T., Cordier D., Seignovert B., Maltagliati L., Biennier L. The 3.4 μm absorption in Titan's stratosphere: Contribution of ethane, propane, butane and complex hydrogenated organics // Icarus. 2020. V. 339. P. 113571.
  4. Eyes on Titan: Dragonfly Team Shapes Science Instrument Payload [Electronic resource]. URL: https:// dragonfly.jhuapl.edu (last access: 6.03.2020).
  5. Babilotte P. Two color pump-probe dichroism and birefringence measurements in atmospheric molecules // Atmos. Ocean. Opt. 2018. V. 31, N 4. P. 346–357.
  6. Kornev A.S., Zon B.A. Tunneling ionization of vibrationally excited nitrogen molecules // Phys. Rev. A. 2015. V. 92, N 3. P. 033420.
  7. Kopytin I.V., Kornev A.S., Zon B.A. Tunnel ionization of diatomic atmospheric gases (N2, O2) by laser radiation // Laser Phys. 2019. V. 29, N 9. P. 095301.
  8. Keldysh L.V. Ionizatsiya v pole sil'noj elektromagnitnoj volny // ZhETF. 1964. V. 47, isue 5. P. 1945–1957.
  9. Demkov Yu.N., Drukarev G.F. Raspad i polyarizuemost' otritsatel'nogo iona v elektricheskom pole // ZhETF. 1964. V. 47, issue 3. P. 918–924.
  10. Zel'dovich YA.B., Manakov N.L., Rapoport L.P. Kvazienergiya sistemy, podvergayushchejsya periodicheskomu vneshnemu vozdejstviyu // Uspekhi fiz. nauk. 1975. V. 117, N 11. P. 563–565.
  11. Manakov N.L., Rapoport L.P. Chastitsa s maloj energiej svyazi v tsirkulyarno polyarizovannom pole // ZhETF. 1975. V. 69, issue 3. P. 842–852.
  12. Manakov N.L., Fajnshejn A.G. Raspad svyazannogo urovnya v monohromaticheskom pole // ZhETF. 1980. V. 79, issue 3. P. 751–762.
  13. Fabelinskij I.L. Molekulyarnoe rasseyanie sveta. M.: Nauka, 1965. 512 p.
  14. Tong X.M., Zhao Z.X., Lin C.D. Theory of molecular tunneling ionization // Phys. Rev. A. 2002. V. 66, N 3. P. 033402.
  15. Madsen L.B., Tolstikhin O.I., Morishita T. Application of the weak-field asymptotic theory to the analysis of tunneling ionization of linear molecules // Phys. Rev. A. 2012. V. 85, N 5. P. 053404.
  16. Tolstikhin O.I., Wörner H.J., Morishita T. Effect of nuclear motion on tunneling ionization rates of molecules // Phys. Rev. A. 2013. V. 87, N 4. P. 041401(R).
  17. Zon B.A. Born–Oppenheimer approximation for molecules in a strong light field // Chem. Phys. Lett. 1996. V. 262. P. 744–746.
  18. Radtsig A.A., Smirnov B.M. Spravochnik po atomnoj i molekulyarnoj fizike. M.: Atomizdat, 1980. 240 p.
  19. Kobus J. A finite difference Hartree–Fock program for atoms and diatomic molecules // Comp. Phys. Commun. 2013. V. 184, N 3. P. 799–811.
  20. Encyclopedia of the Solar System (2nd ed.) / McFadden L.-A., Weissman P.R., Johnson T.V. (eds.). Amsterdam, Boston: Academic Press, 2007. 992 p.
  21. Théberge F. Aközbek N., Liu W., Becker A., Chin S.L. Tunable ultrashort laser pulses generated through filamentation in gases // Phys. Rev. Lett. 2006. V. 97. P. 023904.
  22. Chekalin S.V., Kandidov V.P. Ot samofokusirovki svetovyh puchkov – k filamentatsii lazernyh impul'sov // Uspekhi fiz. nauk. 2013. V. 183. N 2. P. 133–152.
  23. Steinmeyer G., Brée C. Extending filamentation // Nat. Photon. 2014. V. 8. P. 271–273.
  24. Sheller M., Mills M.S., Miri M.-A., Cheng W., Moloney J.V., Kolesik M. Polynkin P., Christodoulides D.N. Externally refuelled optical filaments // Nat. Photon. 2014. V. 8. P. 297–301.
  25. Vaičaitis V., Butkus R., Balachninaitė O, Morgner U., Babuskin I. Diffraction-enhanced femtosecond white-light filaments in air // Appl. Phys. B. 2018. V. 124. P. 221.