Vol. 35, issue 02, article # 10

Volkov Yu. V., Cheredko N. N., Tartakovsky V. A. Structure of the temperature field in the Northern hemisphere during the period of modern climate change. // Optika Atmosfery i Okeana. 2022. V. 35. No. 02. P. 143–149. DOI: 10.15372/AOO20220209 [in Russian].
Copy the reference to clipboard
Abstract:

An original method for objective climate classification is being developed based on the idea of the universality of the principle of consistency of natural and climatic processes. The method makes it possible to study the response of the climate system structure to different external factors taking into account regional characteristics. A unique interactive software package created for this task allows one to select, study, and simulate climatic clusters based on the climatic characteristics of any nature on any spatial and temporal scales. Examples of the method implementation are given.

Keywords:

climate change monitoring, synchronicity, temperature series phase, climate classification

References:

  1. Izmeneniya klimata, 2013 year: Fizicheskaya nauchnaya osnova. Vklad Rabochej gruppy I v Pyatyj otsenochnyj doklad Mezhpravitel'stvennoj gruppy ekspertov po izmeneniyu klimata / T.F. Stoker, D. TSin', Plattner [i dr.]. Kembridzh; N'yu-Jork: Kembridzh Yuniversiti press, 2013. 222 p.
  2. Kottek M., Grieser J., Beck C., Rudolf B., Rubel F. World map of the Köppen–Geiger climate classification updated // Meteorol. Z. 2006. V. 15. Р. 259–263.
  3. Rohli R.V., Joyner T.A., Reynolds St. J., Shaw C., Vazquez J.R. Globally Extended Kӧppen–Geiger climate classification and temporal shifts in terrestrial climatic types // Phys. Geographi. 2015. V. 36, iss. 2. P. 142–157.
  4. Belda M., Holtanová E., Kalvová J., Halenka T. Global warming-induced changes in climate zones based on CMIP5 projections // Clim. Res. 2016. V. 71. P. 17–31. DOI: 10.3354/cr01418.
  5. Wu B., Lang X., Jiang D. Köppen climate zones in China over the last 21000 years // J. Geophys. Res.: Atmospheres. 2021. V. 126, iss. 6. DOI: 10.1029/2020jd034310.
  6. Tartakovsky V.A., Cheredko N.N., Maximov V.G. Emerdzhentnye svojstva klimaticheskoj sistemy. Proizvodnye srednegodovoj temperatury na meteostantsiyah Severnogo polushariya // Optika atmosf. i okeana. 2021. V. 34, N 5. P. 369–373. DOI: 10.15372/AOO20210509; Tartakovsky V.A., Cheredko N.N., Maximov V.G. Emergent properties of a climate system: Derivatives of annual average temperature at weather stations of the Northern hemisphere // Atmos. Ocean. Opt. 2021. V. 34, N 4. P. 341–346. DOI: 10.1134/S1024856021040138.
  7. Cheredko N.N., Tartakovsky V.A., Krutikov V.A., Volkov Yu.V. Klassifikatsiya klimatov Severnogo polushariya na osnove otsenki fazy temperaturnogo signala // Optika atmosf. i okeana. 2016. V. 29, N 8. P. 625–632; Cheredko N.N., Tartakovsky V.A., Krutikov V.A., Volkov Yu.V. Climate classification in the Northern hemisphere using phases of temperature signals // Atmos. Ocean. Opt. 2017. V. 30, N 1. Р. 63–69. DOI: 10.1134/S1024856017010043.
  8. Cheredko N.N., Tartakovsky V.A., Volkov Yu.V., Krutikov V.A. Transformatsiya prostranstvennoj struktury polya prizemnoj temperatury Severnogo polushariya // Izv. RAN. Ser. geogr. 2020. N 1. P. 1–9.
  9. Volkov Yu.V. Analysis of temperature signals and their clusterization algorithm // Opto-electron. Instrum. Data Proc. 2019. V. 55, N 3. P. 243–248. DOI: 10.3103/S8756699019030051.
  10. Huang N.E., Wu Z. A review on Hilbert–Huang transform method and its applications to geophysical studies // Rev. Geophys. 2008. V. 46. DOI: 10.1029/2007RG000228.
  11. Jain A.K. Data clustering: 50 years beyond K-means // Patt. Recognit. Lett. 2010. V. 31, iss. 8. P. 651–666. DOI: 10.1016/j.patrec.2009.09.011.
  12. Zakusilov V.P., Zakusilov P.V. Ispol'zovanie komponentnogo analiza dlya harakteristiki atmosfernoj tsirkulyatsii nad zapadnym geograficheskim rajonom // Vest. VGU. Ser.: Geogr. Geoekol. 2009. N 2. P. 67–71.
  13. Popova V.V., Shmakin A.B. Regional'naya struktura kolebanij temperatury prizemnogo vozduha v Severnoj Evrazii vo vtoroj polovine XX – nachale XXI vekov // Izv. RAN. Fiz. atmosf. i okeana. 2010. V. 46, N 2. P. 161–175.
  14. Netzel P., Stepinski T. On using a clustering approach for global climate classification // J. Clim. 2016. V. 29, iss. 9. P. 3387–3401. DOI: 10.1175/JCLI-D-15-0640.1.
  15. Falquina R., Gallardo C. Development and application of a technique for projecting novel and disappearing climates using cluster analysis // Atmos. Res. 2017. V. 197. P. 224–231. DOI: 10.1016/j.atmosres.2017.06.031.
  16. Arhiv Universiteta Vostochnoj Anglii [Elektronnyj resurs]. URL: http://www.metoffice.gov.uk, http://www.cru.uea.ac.uk (data obrashcheniya: 01.08.2019).
  17. Walsh J.E. Intensified warming of the Arctic: Causes and impacts on middle latitudes // Glob. Planetary Change. 2014. V. 117. P. 52–63. DOI: 10.1016/j.gloplacha.2014.03.003.
  18. Alekseev G.V. Proyavlenie i usilenie global'nogo potepleniya v Arktike // Fund. i prikl. klimatol. 2015. V. 1. P. 11–26.
  19. Kononova N.K. Klassifikatsiya tsirkulyatsionnyh mekhanizmov Severnogo polushariya po B.L. Dzedzeevskomu / otv. red. A.B.  Shmakin. M.: Voentekhinizdat, 2009. 372 p.
  20. Hurrell J.W. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation // Science. 1995. V. 269. P. 676–679.
  21. Kundzewicz Z.W., Pińskwar I., Koutsoyiannis D. Variability of global mean annual temperature is significantly influenced by the rhythm of ocean-atmosphere oscillations // Sci. Total Environ. 2020. V. 747. 141256. DOI: 10.1016/j.scitotenv.2020.141256.
  22. Semenov V.A., Mohov A.B., Polonskij A.B. Modelirovanie vliyaniya estestvennoj dolgoperiodnoj izmenchivosti v Severnoj Atlantike na formirovanie anomalij klimata // Mor. gidrofiz. zhurn. 2014. N 4. P. 14–26.
  23. Hurrell J.W. van Loon H. 1997 Decadal variations in climate associated with the North Atlantic Oscillation // Climat. Change V. 36. P. 301–326.
  24. Iles C., Hegerl G. Role of the North Atlantic Oscillation in decadal temperature trends // Environ. Res. Lett. 2017. V. 12, N 11. P. 114010. DOI: 10.1088/1748-9326/aa9152.
  25. Alekseev G.V., Ivanov N.E., Pnyushkov A.V., Balakin A.A. Izmeneniya klimata v morskoj Arktike v nachale XXI veka // Probl. Arktiki i Antarktiki. 2010. V. 86, N 3. P. 22–34.
  26. Matishov G.G., Matishov D.G., Moiseev D.V. Inflow of Atlantic-origin waters to the Barents Sea along glacial troughs // Oceanologia. 2009. V. 3, N 51. Р. 293–312.
  27. Panagiotopoulos F., Shahgedanova M., Hannachi A., Stephenson D.B. Observed trends and teleconnections of the Siberian High: A recently declining center of action // J. Clim. 2005. V. 18, iss. 9. P. 1411–1422. DOI: 10.1175/JCLI3352.1.