Stationary non-laser gas analyzers based on the classical differential absorption method have been designed for continuous measurement of the content of nitrogen and sulfur oxides in exhaust gases of thermal power plants natural gas, coal, and fuel oil. The operation of gas analyzers at Russian thermal power plants based on has shown their high sensitivity, reliability, and ease of maintenance. Based on the method of differential optical absorption spectroscopy and UV LEDs, a prototype of a portable low-power gas analyzer has been designed. It is an effective tool for simultaneous trace measurements of concentrations of a number of atmospheric gases. A mercury analyzer has been created based on the atomic absorption method using a capillary lamp with a natural isotopic composition of mercury with a transverse Zeeman effect as a radiation source. A technique for determining mercury in various media has been developed; the sensitivity of the analyzer is 14 ng/m3. The possibility of its wide use for multi-purpose mercury monitoring is shown.
absorption spectroscopy, gas analyzer, LEDs, UV-radiation, nitrogen oxides, mercury, Zeeman effect
1. Nemets V.M., Petrov A.A., Solov'ev A.A. Spektral'nyj analiz neorganicheskih gazov. L.: Himiya, 1988. 240 p.
2. Platt U., Stutz J. Differential Optical Absorbtion Spectroscopy. Berlin, Heidelberg: Springer-Verlag, 2008. 593 p.
3. Ganeev A.A., Sholupov S.E., Pupyshev A.A., Bol'shakov A.A., Pogarev S.E. Atomno-absorbtsionnyj analiz. SPb.: Lan', 2011. 304 p.
4. Ippolitov I.I., Buldakov M.A., Zhilitskij V.F., Korolev B.V., Krajnov V.V., Lobetskij V.E., Loboda S.A., Matrosov I.I., Tigeev S.V. Gazoanalizator dlya izmereniya oksida azota v dymovyh gazah // Teploenergetika. 1994. N 10. P. 63–65.
5. Azbukin A.A., Buldakov M.A., Korolev B.V., Korol'kov V.A., Matrosov I.I., Tikhomirov A.A. A Stationary gas analyzer of nitric and sulfur oxides // Instrum. Exp. Tech. 2006. V. 49, N 6. P. 839–843.
6. Geiko P.P., Smirnov S.S., Samokhvalov I.V. Detection of concentration small gas components of atmosphere by DOAS method // Opt. Mem. Neural Netw. (Inf. Opt.). 2015. V. 24, N 2. P. 152–158.
7. Kern C., Trick S., Rippel B., Platt U. Applicability of light-emitting diodes as light sources for active differential optical absorption spectroscopy measurements // Appl. Opt. 2006. V. 45, N 9. P. 2077–2068.
8. Stutz J., Hurlock S., Colosimo S., Tsai C., Cheung R., Festa J., Pikelnaya O., Alvarez S., Flynn J., Erickson M., Olaguer E. A novel dual-LED based long-path DOAS instrument for the measurement of aromatic hydrocarbons // Atmos. Environ. 2016. V. 147, N 1. P. 121–132.
9. Vita F., Kern C., Inguaggiato S. Development of a portable active long-path differential optical absorption spectroscopy system for volcanic gas measurements // J. Sens. Syst. 2014. V. 3, N 1. P. 355–367.
10. Marquardt D.W. An algorithm for least-squares estimation of nonlinear parameters // J. Soc. Indust. Appl. Math. 1963. V. 11, N 2. P. 431–441.
11. Geiko P.P., Smirnov S.S., Samokhvalov I.V. Long path detection of atmospheric pollutants by UV DOAS gas-analyzer // Proc. SPIE. 2019. V. 11208. P. 11120832T.
12. Geiko P.P., Smirnov S.S. Implementation of the DOAS method for measuring concentrations of chlorine and bromine oxide molecules in the atmosphere in the UV region of the spectrum // Rus. Phys. J. 2020. V. 63, N 6. Р. 1030–1036.
13. Al'tman E.L., Sveshnikov G.B., Turkin Yu.I., Sholupov S.E. Zeemanovskaya atomno-absorbtsionnaya spektroskopiya // Zhurn. prikl. spektroskop. 1982. V. 37, N 5. P. 709–722.
14. Antipov A.B., Genina E.Yu., Kashkan G.V., Mel'nikov N.G. Rtutnyj monitoring // Optika atmosf. i okeana. 1994. V. 7, N 11–12. P. 1630–1635.
15. Buldakov M.A., Matrosov I.I., Tihomirov A.A., Korolev B.V. Portativnyj opticheskij analizator parov rtuti v atmosfernom vozduhe DOG-05 // Bezopasnost' v tekhnosfere. 2011. N 1. P. 11–15.
16. Abramochkin A.I., Korolkov V.A., Mutnitsky N.G., Tatur V.V., Tikhomirov A.A. Portable mercury gas analyzer with a lamp filled with natural mercury isotope mixture // Proc. SPIE. 2015. V. 9680. P. 96803D.
17. Abramochkin A.I., Tatur V.V., Tikhomirov A.A. Investigation of the p- and s-components of mercury capillary lamp radiation in the presence transverse Zeeman Effect // Rus. Phys. J. 2016. V. 59, N 9. Р. 1343–1348.
18. URL: https://ktopoverit.ru/prof/opisanie/18795-09.pdf Prilozhenie k svidetel'stvu ob utverzhdenii tipa sredstv izmerenij. Analizatory rtuti modifikatsij РА-915+, РА-915М (data obrashcheniya: 10.03.2021).