Abstract:
The results of numerical and experimental studies on the control and management of optical elements of an electric-discharge KrF laser using the developed method based on DBSCAN are presented. Various methods for processing the data obtained from the position-sensitive detectors and a possibility of using the DBSCAN algorithm to increase the speed of the optical system alignment automation device are considered. The conditions for correcting controlled mirrors with an accuracy of their return of 60 ± 10 mrad are determined. The adjustment time does not exceed 5 min.
Keywords:
KrF-laser, alignment automation, optical system, filtration methods
References:
- Zacharias R.A., Beer N.R., Bliss E.S., Burkhart S.C., Cohen S.J., Sutton S.B., van Atta R.L., Wintwrs S.E., Salmon J.T., Latta M.R., Stolz C.J., Pigg D.C., Arnold T.J. Alignment and wavefront control systems of the National Ignition Facility // Opt. Eng. 2004. V. 43, N 12. P. 2873–2884.
- Hilsz L., Challois S., Nicaise F., Luttmann M., Adolf A. Redesign of the image processing techniques used for the alignment of the LMJ Amplifier Section // Proc. SPIE. 2010. V. 7797. P. 77970D-1–16.
- Andreev M.V., Bobrovnikov S.M., Gorlov E.V., Panchenko Yu.N., Puchikin A.V., Zharkov V.I. Chislennyj metod yustirovki rezonatora po izobrazheniyu vyhodnogo puchka // Optika atmosf. i okeana. 2018. V. 31, N 2. P. 151–155; Andreev M.V., Bobrovnikov S.M., Gorlov E.V., Panchenko Yu.N., Puchikin A.V., Zharkov V.I. Numerical method of cavity adjustment by the output beam image // Atmos. Ocean. Opt. 2018. V. 31, N 3. P. 324–328.
- Nosato H., Murata N., Furuya T., Murakawa M. Automatic adjustment for laser systems using a stochastic binary search algorithm to cope with noisy sensing data // Int. J. Smart Sens. Intell. Syst. 2008. V. 1, N 2. P. 512–533.
- Bukreev V.S., Vartapetov S.K., Veselovskij I.A., Galustov A.S., Kovalev Yu.M., Prohorov A.M., Svetogorov E.S., Hmelevtsov S.S., Li Ch.H. Lidarnaya sistema dlya zondirovaniya stratosfernogo i troposfernogo ozona na osnove eksimernyh lazerov // Kvant. elektron. 1994. V. 21, N 6. P. 591–596.
- Panchenko Yu.N., Andreev M.V., Bobrovnikov S.M., Gorlov E.V., Dudarev V.V., Ivanov N.G., Losev V.F., Pavlinskij A.V., Puchikin A.V., Zharkov V.I. Uzkopolosnaya perestraivaemaya lazernaya sistema dlya lidarnogo kompleksa // Izv. vuzov. Fizika. 2012. V. 55, N 6. P. 13–18.
- Boreisho A.S., Volodenko V.A., Gryaznov N.A., Malamed E.R., Mendov Yu.N., Moshkov V.L., Pantaleev S.M., Pankratiev A.V., Finagin A.E., Chakchir S.Ya., Frolov-Bagreev L.Yu., Konyaev M.A. Mobile lidar complex for ecological monitoring of the atmosphere // Proc. SPIE. 2004. V. 5479. P. 176–186. DOI: 10.1117/12.558393.
- Panchenko Yu.N., Puchikin A.V., Yampolskaya S.A., Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Narrowband KrF laser for Lidar systems // IEEE J. Quantum. Electron. 2021. V. 57, N 2. P. 1–5.
- Ester M., Kriegel H.-P., Sander J., Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise // Proc. II Intern. Conf. on Knowledge Discovery and Data Mining (KDD-96). 1996. P. 226–231.
- Borovikov V.P., Borovikov I.P. Statisticheskij analiz i obrabotka dannyh v srede Windows. M.: Filin", 1998. 577 p.
- Kendall M.Dzh., St'yuart A. Mnogomernyj statisticheskij analiz i vremennye ryady. M.: Nauka, 1976. 736 p.
- Debnath M., Tripathi P.K., Elmasri R. K-DBSCAN: Identifying spatial clusters with differing density levels // Intern. Workshop on Data Mining with Industrial Appl. (DMIA) 2015. P. 51–60.