A possibility of increasing the radiation power of a CuBr laser by increasing the pumping energy is studied. For this purpose, a three-cascade system of nanosecond oscillators is used, which excite the active medium of the laser when connected in series. Each source provides a pump power of up to 2 kW. A TGI1-1000/25 thyratron is used as a switch. The pump sources perform pulse charging of the working capacitance, which ensures stable operation of the system. The use of such a power source for excitation of a gas-discharge tube 5 cm diameter and 90 cm long provides for an output power of more than 40 W in a modified scheme with pulse cable autotransformer and peaking capacitor. Tests of the source confirm its effectiveness for pumping high power metal vapor lasers.
CuBr laser, energy input, cable pulse autotransformer, peaking capacitor, excitation pulse duration
1. Little C.E. Metal Vapor Lasers: Physics, Engineering & Applications. Chichester: John Willey & Sons Ltd., 1998. 620 p.
2. Evtushenko G.S., Kazaryan M.A., Torgaev S.N., Trigub M.V., Shiyanov D.V. Skorostnye usiliteli yarkosti na indutsirovannyh perekhodah v parah metallov. Tomsk: STT, 2016. 246 p.
3. Grigor'yants A.G., Kazaryan M.A., Lyabin N.A. Lazery na parah medi. M.: Fizmatlit, 2005. 312 p.
4. Bohan P.A., Buchanov V.V., Zakrevskij D.E., Kazaryan M.A., Kalugin M.M., Prohorov A.M., Fateev N.V. Lazernoe razdelenie izotopov v atomarnyh parah. Moskva: Fizmatlit, 2004. 208 p.
5. Kimura H., Aoki N., Kobayashi N., Kanagai Ch., Seki E., Abe M., Mori H. Development of high power copper vapor laser system // Proc. SPIE. 2000. V. 3886. P. 550–561.
6. Astadjov D.N., Dimitrov K.D., Jones D.R., Kirkov V.K., Little C.E., Sabotinov N.V., Vuchkov N.K. Copper bromide laser of 120-W average output power // IEEE J. Quantum Electron. 1997. V. 33, N 5. P. 705–709.
7. Kostadinov I.K., Temelkov K.A., Astadjov D.N., Slaveeva S.I., Yankov G.P., Sabotinov N.V. High-power copper bromide vapor laser // Opt. Commun. 2021. V. 501. N 127363.
8. Batenin V.M., Buchanov V.V., Kazaryan M.A., Klimovskij I.I., Molodyh E.I. Lazery na samoogranichennyh perekhodah atomov metallov. M.: Nauchnaya kniga, 1998. 544 p.
9. Elaev V.F., Lyah G.D., Pelenkov V.P. CuBr-lazer so srednej moshchnost'yu generatsii svyshe 100 W // Opt. atmosf. 1989. V. 2, N 11. P. 1228–1229.
10. Voronov V.I., Elaev V.F., Ivanov A.I., Kirilov A.E., Polunin Yu.P., Soldatov A.N., Shumejko A.S. Issledovanie i razrabotka moshchnyh lazerov na parah bromida medi s otpayannym aktivnym elementom // Optika atmosf. i okeana. 1993. V. 6, N 6. P. 727–730.
11. Astadjov D.N., Dimitrov K.D., Jones D.R., Kirkov V., Little L., Little C.E., Sabotinov N.V., Vuchkov N.K. Influence on operating characteristics of scaling sealed-off CuBr lasers in active length // Opt. Commun. 1997. V. 135, N 4–6. P. 289–294.
12. Sabotinov N.V., Kostadinov I.K., Bergman H.W., Salimbeni R., Mizeraczyk J. A 50-Watt copper bromide laser // Proc. SPIE. 2001. V. 4184. P. 203–205.
13. Shiyanov D.V., Dimaki V.A., Trigub M.V., Gembukh P.I., Troitskii V.O. Three-stage power supply with a pulsed charge of the storage capacitance for metal vapor lasers // Proc. SPIE. 2021. V. 12086. P. 1208605.
14. Andrienko O.S., Dimaki V.A., Kolbychev V.G., Suhanov V.B., Troitskij V.O. Lazer na parah bromida medi maloj moshchnosti // Optika atmosf. i okeana. 2004. V. 17, N 11. P. 890–894.
15. Dimaki V.A., Suhanov V.B., Troitskij V.O., Filonov A.G., Shestakov D.Yu. Lazer na bromide medi s komp'yuternym upravleniem impul'sno-periodicheskogo, tsugovogo i zhdushchego rezhimov // Pribory i tekhnika eksperimenta. 2008. N 6. P. 119–122.
16. Dimaki V.A., Suhanov V.B., Troitskij V.O., Filonov A.G. Stabilizirovannyj lazer na bromide medi s avtomatizirovannym upravleniem rezhima raboty so srednej moshchnost'yu 20 W // Pribory i tekhnika eksperimenta. 2012. N 6. P. 95–99.
17. Troitskij V.O., Dimaki V.A., Filonov A.G. Istochnik pitaniya dlya lazera na parah bromida medi // Pribory i tekhnika eksperimenta. 2016. N 3. P. 57–60.
18. Trigub M.V., Vlasov V.V., Shiyanov D.V., Suhanov V.B., Troitskij V.O. Povyshenie effektivnosti vozbuzhdeniya CuBr lazera za schet modifikatsii razryadnogo kontura // Optika atmosf. i okeana. 2017. V. 30, N 12. P. 1069–1072.
19. Andrienko O.S., Gubarev F.A., Dimaki V.A., Ivanov A.I., Levitskij M.E., Suhanov V.B., Troitskij V.O., Fedorov V.F., Filonov A.G., Shiyanov D.V. Lazery na parah bromida medi novogo pokoleniya // Optika atmosf. i okeana. 2009. V. 22, N 10. P. 999–1009.
20. Sabotinov N.V., Vuchkov N.K., Astadjov D.N. Effect of hydrogen in the CuBr- and CuCl-vapor laser // Opt. Commun. 1993. V. 95, N 1–3. P. 55–56.
21. Sposob podderzhaniya i regulirovaniya kontsentratsii galogenovodoroda v gazorazryadnoj trubke lazera i gazorazryadnaya trubka lazera na parah galogenidov metallov: Patent 2295811. Russia, H01S 3/22. Andrienko O.S., Suhanov V.B., Troitskij V.O., Shestakov D.Yu., Shiyanov D.V.; Institut optiki atmosfery SO RAN. N 2004132665/28; Zayavl. 09.11.2004; Opubl. 20.03.2007. Byul. N 8.
22. Isaev A.A., Jones D.R., Little C.E., Petrash G.G., Whyte C.G., Zemskov K.I. Characteristics of pulsed discharges in copper bromide and copper HyBID lasers // IEEE J. Quantum Electron. 1997. V. 33, N 6. P. 919–926.