Vol. 35, issue 05, article # 6

Razenkov I. A. Comparison of turbulent lidar data with meteorological measurements. // Optika Atmosfery i Okeana. 2022. V. 35. No. 05. P. 381–389. DOI: 10.15372/AOO20220506 [in Russian].
Copy the reference to clipboard
Abstract:

The turbulence parameters obtained using lidar are compared with the parameters determined from the average values of velocity and temperature in the surface air layer. The results of observations of the structural constant of the refractive index Cn2 obtained from the ratio of the turbulent lidar returns in the surface air layer when working along a slightly inclined sounding path are presented. A method for determining the rate of kinetic energy dissipation from lidar data has been tested.

Keywords:

atmospheric turbulence, backscattering enhancement effect, turbulent lidar, kinetic energy dissipation rate

References:

  1. Vinogradov A.G., Gurvich A.S., Kashkarov S.S., Kravtsov Yu.A., Tatarskij V.I. «Zakonomernost' uvelicheniya obratnogo rasseyaniya voln». Svidetel'stvo na otkrytie N 359. Prioritet otkrytiya: 25 august 1972 year v chasti teoreticheskogo obosnovaniya i 12 august 1976 year v chasti eksperimental'nogo dokazatel'stva zakonomernosti. Gosudarstvennyj reestr otkrytij SSSR // Byull. izobretenij. 1989. N 21.
  2. Kravtsov Yu.A., Saichev A.I. Effekty dvukratnogo prohozhdeniya voln v sluchajno neodnorodnyh sredah // Uspekhi fiz. nauk. 1982. V. 137, iss. 3. P. 501–527.
  3. Razenkov I.A. Turbulentnyj lidar. I. Konstruktsiya // Optika atmosf. i okeana. 2018. V. 31, N 1. P. 41–48; Rаzenkov I.А. Turbulent lidar: I – Desing // Atmos. Ocean. Opt. 2018. V. 31, N 3. P. 273–280.
  4. Razenkov I.A. Turbulentnyj lidar. II. Eksperiment // Optika atmosf. i okeana. 2018. V. 31, N 2. P. 81–89; Rаzenkov I.А. Turbulent lidar: II – Experiment // Atmos. Ocean. Opt. 2018. V. 31, N 3. P. 281–289.
  5. Vorob'ev V.V. O primenimosti asimptoticheskih formul vosstanovleniya parametrov «opticheskoj» turbulentnosti iz dannyh impul'snogo lidarnogo zondirovaniya. I. Uravneniya // Optika atmosf. i okeana. 2016. V. 29, N 10. P. 870–875; Vorob’ev V.V. On the applicability of asymptotic formulas of retrieving “optical” turbulence parameters from pulse lidar sounding data: I – Equations // Atmos. Ocean. Opt. 2017. V. 30, N 2. P. 156–161.
  6. Razenkov I.A. Evristicheskij podhod k opredeleniyu strukturnoj harakteristiki Cn2 iz lidarnyh dannyh // Optika atmosf. i okeana. 2022. V. 35. N 3. P. 195–204. DOI: 10.15372/AOO20220304.
  7. Razenkov I.A. Perspektivy primeneniya turbulentnogo UOR-lidara dlya issledovaniya pogranichnogo sloya atmosfery // Optika atmosf. i okeana. 2021. V. 34, N 1. P. 26–35; Razenkov I.A. Capabilities of a turbulent BSE-lidar for the study of the atmospheric boundary layer // Atmos. Ocean. Opt. 2021. V. 34, N 3. P. 229–238.
  8. Gurvich A.S., Kon A.I., Mironov V.L., Hmelevtsov S.S. Lazernoe izluchenie v turbulentnoj atmosfere. M.: Nauka, 1976. 280 p.
  9. Tatarskij V.I. Rasprostranenie voln v turbulentnoj atmosfere. M: Nauka, 1967. 548 p.
  10. URL: https://www.lop.iao.ru (last access: 11.02.2022).
  11. Odintsov S.L., Gladkih V.A., Kamardin A.P., Nevzorova I.V. Ispol'zovanie rezul'tatov akusticheskoj diagnostiki pogranichnogo sloya atmosfery dlya otsenki vliyaniya turbulentnosti na harakteristiki lazernogo puchka // Optika atmosf. i okeana. 2017. V. 30, N 12. P. 1008–1016; Odintsov S.L., Gladkikh V.A., Kamardin A.P., Mamyshev V.P., Nevzorova I.V. Results of acoustic diagnostics of atmospheric boundary layer in estimation of the turbulence effect on laser beam parameters // Atmos. Ocean. Opt. 2018. V. 31, N 6. P. 553–563.
  12. Kamardin A.P., Odintsov S.L. Vysotnye profili strukturnoj harakteristiki temperatury vozduha v pogranichnom sloe atmosfery po sodarnym izmereniyam // Optika atmosf. i okeana. 2016. V. 29, N 8. P. 709–714; Kamardin A.P., Odintsov S.L. Height profiles of the structure characteristic of air temperature in the atmospheric boundary layer from sodar measurements // Atmos. Ocean. Opt. 2017. V. 30, N 1. P. 33–38. DOI: 10.15372/AOO20160813.