Vol. 35, issue 06, article # 8

Golovko V. V., Zueva G. A., Kiseleva T. I. Cluster composition of anemophilic plant pollen entering atmosphere. // Optika Atmosfery i Okeana. 2022. V. 35. No. 06. P. 480–485. DOI: 10.15372/AOO20220608 [in Russian].
Copy the reference to clipboard

The results of the study of pollen emission into the atmosphere of 24 anemophilic plant species and 3 entomophilic plant species for which optional anemophilia is possible are given. The percentage of clusters of two or more pollen grains of the total number of pollen particles entering the atmosphere is estimated. It is shown that such clusters were formed in significant quantities in all series of experiments. The percentage of pollen clusters attained ~ 71% of the total number of pollen particles, and of pollen grains in the clusters, ~ 94% of the total number of pollen grains.


pollen, anemophilic plant, atmospheric aerosol, cluster


1. Biedermann T., Winther L., Till S.J., Panzner P., Knulst A., Valovirta E. Birch pollen allergy in Europe // Allergy. 2019. V. 74, N 7. P. 1237–1248.

  1. Buters J.T.M., Antunes C., Galveias A., Bergmann K.C., Thibaudon M., Galán C., Schmidt-Weber C., Oteros J. Pollen and spore monitoring in the world // Clin. Transl. Allergy. 2018. V. 8, N 9. DOI: 10.1186/s13601-018-0197-8.

  2. Crook B. Inertial samplers: Biological perspectives // Bioaerosols. Boca Raton, Florida: Lewis Publishers, 1995. P. 247–267.

  3. Crook B. Non-inertial samplers: Biological perspectives // Bioaerosols Handbook / Cox C.S., Wathes C.M. (eds.). Boca Raton, Florida: Lewis Publishers, 1995. P. 269–283.

  4. Fuks N.A. Mekhanika aerozolej. M.: Izd-vo Akademii Nauk SSSR, 1955. 352 p.

  5. Bohlmann S., Shang X., Giannakaki E., Filioglou M., Romakkaniemi S., Komppula M., Saarto A. Action and characterization of birch pollen in the atmosphere using a multiwavelength Raman polarization lidar and Hirst-type pollen sampler in Finland // Atmos. Chem. Phys. 2019. V. 19, N 23. P. 14559–14569.

  6. Beggs P.J., Davies J.M., Milic A., Haberl S.G., Johnston F.H., Jones P.J., Katelaris C.H., Newbigin E. Australian Airborne Pollen and Spore Monitoring Network Interim Standard and Protocols. Macquare University, Queensland University of Technology, 2018. 77 p.

  7. Tummon F., Arboledas L.A., Bonini M., Guinot B., Hicke M., Christophe J., Kendrovski V., McCairns W., Petermann E., Peuch V.H., Pfaar O., Sicard M., Sikoparija B., Clot B. The need for Pan-European automatic pollen and fungal spore monitoring: A stakeholder workshop position paper. // Clin Transl Allergy. 2021. V. 11, N 3. P. e12015. DOI: 10.1002/clt2.12015.

  8. Raynor G.S., Ogden E.C., Haes J.V. Dispersion and deposition of Ragweed Pollen from experimental sources // J. Appl. Meteorol. 1970. V. 9, N 6. P. 885–895.

  9. Blackmore S., Barnes Y.S. Harmomegathic mechanisms in pollen grains // Pollen and Spores. Form and Function. London: Academic Press, 1986. P. 137–149.

  10. Harrington J.B., Kurt M. Ragweed pollen density // Amer. J. Bot. 1963. V. 50, N 6. P. 532–539.

  11. Lacey J. Aggregation of spores and its effect on aerodynamic behavior // Grana. 1991. N 30. P. 437–445.

  12. Golovko V.V., Kutsenogij K.P., Istomin V.L. Agregatnyj sostav pyl'tsevogo aerozolya v atmosfere g. Novosibirska // Optika atmosf. i okeana. 2014. V. 27, N 6. P. 553–559.

  13. Golovko V.V., Belanova A.P., Zueva G.A. Issledovanie klasternogo sostava pyl'tsevyh chastits, postupayushchih v atmosferu vo vremya tsveteniya anemofil'nyh rastenij // Optika atmosf. i okeana. 2019. V. 32, N 6. P. 476–481. DOI: 10.15372/AOO20190610.

  14. Golovko V.V., Zueva G.A., Kiseleva T.I. Pyl'tsevye chastitsy anemofil'nyh rastenij, postupayushchie v atmosferu. Klasternyj sostav // Optika atmosf. i okeana. 2021. V. 34, N 6. P. 446–452; Golovko V.V., Zueva G.A., Kiseleva T.I. Anemophilous plant pollen grains entering the atmosphere: Cluster composition // Atmos. Ocean. Opt. 2021. V. 34, N 5. P. 483–490.