Vol. 35, issue 07, article # 2

Bobrovnikov S. M., Zharkov V. I., Zaitsev N. G., Nadeev A. I., Trifonov D. A. Analysis of the correctness of retrieval of vertical atmospheric temperature distribution from lidar signals of molecular scattering at the main lidar of the Siberian lidar station. // Optika Atmosfery i Okeana. 2022. V. 35. No. 07. P. 524–531. DOI: 10.15372/AOO20220702 [in Russian].
Copy the reference to clipboard
Abstract:

The methodological issues of lidar measurements of the vertical distribution of atmospheric temperature up to altitudes of 90 km are considered. The method is based on the lidar measurements of the atmospheric molecular density vertical profile using the Rayleigh scattering effect. The results obtained in the upgraded channel of the Rayleigh scattering of the lidar based on the main mirror of the Siberian lidar station with a diameter of 2.2 m are discussed. An improved technique for the retrieval of temperature from molecular backscattering lidar signals is proposed. Numerical experiments have shown that the accuracy of the temperature profile retrieval depends on the choice of the position of the calibration point and the error in setting the temperature in it. The temperature profile retrieval technique, when the calibration point is chosen at the top of the sounding path, is more stable and provides a smaller error compared to calculations provided that the calibration point is chosen at the beginning of the path. The comparison of the results of temperature retrieval from the real lidar responses with the satellite measurement data revealed significant discrepancies associated with the distorting instrumental and atmospheric effects on the shape of the lidar signal. The use of a correction procedure based on the lidar calibration can significantly reduce measurement errors.

Keywords:

lidar, atmosphere, temperature, Rayleigh scattering

References:

  1. Lazernyj kontrol' atmosfery / pod red. E.D. Hinkli. M.: Mir, 1979. 416 p.
  2. Weitkamp C. Lidar, Range-Resolved Optical Remote Sensing of the Atmosphere. Berlin, Heidelberg: Springer, 2005. 456 p.
  3. Von Zahn U., von Cossart G., Fiedler J., Fricke K.H., Nelke G., Baumgarten G., Rees D., Hauchecorne A., Adolfsen K. The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance // Ann. Geophys. 2000. V. 18, N 7. P. 815–833. DOI: 10.1007/s00585-000-0815-2.
  4. Zuev V.V., El'nikov A.V., Burlakov V.D. Lazernoe zondirovanie srednej atmosfery. Tomsk: RASKO, 2002. 352 p.
  5. Philbrick C.R., Schmidlin F.J., Grossmann K.U., Lange G., Offermann D., Baker K.D., Krankowsky D., von Zahn U. Density and temperature structure over northern Europe // J. Atmos. Terr. Phys. 1985. V. 47, N 1–3. P. 159–172. DOI: 10.1016/0021-9169(85)90131-X.
  6. Bobrovnikov S.M., Zharkov V.I., Nadeev A.I., Trifonov D.A. Analysis of the efficiency of methods for retrieval of vertical profile of atmospheric temperature from molecular scattering at the main lidar of the Siberian lidar station // Proc. SPIE. 2021. V. 12086. P. 1208612-1–7. DOI: 10.1117/12.2616676.
  7. Fernald F.G. Analysis of atmospheric lidar observations: Some comments // Appl. Opt. 1984. V. 23, N 5. P. 652–653.
  8. Zhenzhu Wang, Dong Liu, Chenbo Xie, Jun Zhou An iterative algorithm to estimate LIDAR ratio for thin cirrus cloud over aerosol layer // J. Opt. Soc. Korea. 2011. V. 15, N 3. P. 209–215. DOI: 10.3807/JOSK.2011.15.3.209.
  9. McCartney E.J. Optics of the atmosphere: Scattering by molecules and particles. New York: John Wiley & Sons, 1976. 408 p.
  10. Corless R.M., Gonnet G.H., Hare D.E.G., Jeffrey D.J., Knuth D.E. On the Lambert W function // Adv. Comput. Math. 1996. V. 5, N 1. P. 329–359.
  11. Laser monitoring of the atmosphere / E.D. Hinkley (ed.). Berlin: Springer-Verlag, 1976. 312 p.
  12. Edlén B. The refractive index of air // Metrologia. 1966. V. 2, N 2. P. 71–80.
  13. Hauchecorne A., Chanin M.L. Density and temperature profiles obtained by lidar between 35 and 75 km // Geophys. Res. Lett. 1980. V. 7, N 5. P. 565–568. DOI: 10.1029/GL007i008p00565.
  14. Dokumentatsiya Matlab // TSITM Eks-ponenta. M., 2021. URL: http://www.docs.exponenta.ru (data obrashcheniya: 20.04.2021).
  15. Marlton G., Charlton-Perez A., Harrison G., Polichtchouk I., Hauchecorne A., Kekchut P., Wing R., Leblanc Th., Steinbrecht W. Using a network of temperature lidars to identify temperature biases in the upper stratosphere in ECMWF reanalyses // Atmos. Chem. Phys. 2021. V. 21. P. 6079–6092.
  16. Zuev V.V., Marichev V.N., Bondarenko S.L. Issledovanie tochnostnyh harakteristik vosstanovleniya profilej temperatury po lidarnym signalam molekulyarnogo rasseyaniya // Optika atmosf. i okeana. 1996. V. 9, N 12. P. 1615–1619.
  17. Zuev V.V., Marichev V.N., Bondarenko S.L., Dolgij S.I., Sharabarin E.V. Lidarnye izmereniya temperatury po releevskomu rasseyaniyu sveta v nizhnej stratosfere za period may–december 1995 year // Optika atmosf. i okeana. 1996. V. 9, N 10. P. 1386–1393.
  18. Schoeberl M.R., Douglass A.R., Hilsenrath E., Bhartia P.K., Beer R., Waters J.W., Gunson M.R., Froidevaux L., Gille J.C., Barnett J.J., Levelt P.F., DeCola P. Overview of the EOS Aura mission. // IEEE Transac. Geosci. Remote Sens. 2006. V. 44, N 5. P. 1066–1074. DOI: 10.1109/TGRS.2005.861950.
  19. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Zaytsev N.G., Nadeev A.I., Trifonov D.A., Gridnev Y.V. Measurement of atmospheric temperature in the range of 40–90 km at the Siberian lidar station using molecular scattering signal // Proc. SPIE. 2021. V. 11916. P. 119162I-1–5. DOI: 10.1117/12.2602070.
  20. Zaitsev N.G., Nadeev A.I., Trifonov D.A. Optimization of the molecular scattering signal registration system at the Siberian lidar station for the photon counting mode // Proc. SPIE. 2021. V. 11916. P. 11916N-1–7. DOI: 10.1117/12.2606359.
  21. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Trifonov D.A. Metodika yustirovki i otsenka razmera kruzhka rasseyaniya glavnogo zerkala Sibirskoj lidarnoj stantsii // Optika atmosf. i okeana. 2020. V. 33, N 7. P. 559–564. DOI: 10.15372/AOO20200709; Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Trifonov D.A. Alignment technique and quality check of the primary mirror of the Siberian lidar station // Atmos. Ocean. Opt. 2020. V. 33, N 6. P. 696–701. DOI: 10.1134/S1024856020060081.
  22. Korshunov V.A., Zubachev D.S. Uvelichenie obratnogo aerozol'nogo rasseyaniya v nizhnej mezosfere v 2019–2021 years i ego vliyanie na izmereniya temperatury releevskim metodom // Optika atmosf. i okeana. 2022. V. 35, N 1. P. 32–36. DOI: 10.15372/AOO20220105.