Vol. 35, issue 09, article # 7

Gladkikh V. A., Mamysheva A. A., Nevzorova I. V., Odintsov S. L. Estimation and comparison of mixed moments of turbulent- and mesometeorological-scale wind vector components in the surface air layer. // Optika Atmosfery i Okeana. 2022. V. 35. No. 09. P. 735–747. DOI: 10.15372/AOO20220907 [in Russian].
Copy the reference to clipboard
Abstract:

The mixed moments of wind vector components on the turbulent and meso-gamma scales calculated from experimental data obtained in the surface air layer at an altitude of 10 m are compared. The statistics of mixed moments for several months in different seasons of 2021 is presented. The dependence of mixed moments on the wind velocity and temperature stratification in the surface air layer is briefly analyzed. The values of mixed moments formed by the wind field components on the meso-gamma scale are comparable with those formed by the mixed moments of turbulent components of the wind vector.

Keywords:

wind, meso-gamma scale, surface layer, gray zone, mixed moment, turbulence

References:

  1. Boyko V., Vercauteren N. Multiscale shear forсing of turbulence in the nocturnal boundary layer: A statistical Analysis // Bound.-Lay. Meteorol. 2021. V. 179, iss. 1. P. 43–72. DOI: 10.1007/s10546-020-00583-0.
  2. de Bode M., Hedde T., Roubin P., Durand P. Fine-resolution WRF simulation of stably stratified flows in shallow Pre-Alpine Valleys: A case study of the KASCADE-2017 campaign // Atmosphere. 2021. V. 12, N 8. DOI: 10.3390/atmos12081063.
  3. Simon J.S., Chow F.K. Alternative anisotropic formulations for Eddy-Viscosity models in the Weather Research and Forecasting Model // Bound.-Lay. Meteorol. 2021. V. 181, N 1. P. 11–37. DOI: 10.1007/s10546-021-00642-0.
  4. Doubrawa P., Muñoz-Esparza D. Simulating real atmospheric boundary layers at gray-zone resolutions: How do currently available turbulence parameterizations perform? // Atmosphere. 2020. V. 11, N 4. DOI: 10.3390/atmos11040345.
  5. Clement R.J., Moncrieff J.B. A functional approach to vertical turbulent transport of scalars in the atmospheric surface layer // Bound.-Lay. Meteorol. 2019. V. 173, N 3. P. 373–408. DOI: 10.1007/s10546-019-00474-z.
  6. Jeworrek J., West G., Stull R. Evaluation of cumulus and microphysics parameterizations in WRF across the convective gray zone // Weather Forecast. 2019. V. 34, N 4. P. 1097–1115. DOI: 10.1175/WAF-D-18-0178.1.
  7. Honnert R. Grey-zone turbulence in the neutral atmospheric boundary layer // Bound.-Lay. Meteorol. 2019. V. 170, N 2. P. 191–204. DOI: 10.1007/s10546-018-0394-y.
  8. Kealy J.C., Efstathiou G.A., Beare R.J. The onset of resolved boundary-layer turbulence at grey-zone resolutions // Bound.-Lay. Meteorol. 2019. V. 171, N 1. P. 31–52. DOI: 10.1007/s10546-018-0420-0.
  9. Lancz D., Szintai B., Honnert R. Modification of a parametrization of shallow convection in the grey zone using a mesoscale model // Bound.-Lay. Meteorol. 2018. V. 169, iss. 3. P. 483–503. DOI: 10.1007/s10546-018-0375-1.
  10. Rai R.K., Berg L.K., Kosovic B., Mirocha J.D., Pekour M.S., Shaw W.J. Comparison of measured and numerically simulated turbulence statistics in a convective boundary layer over complex terrain // Bound.-Lay. Meteorol. 2017. V. 163, N 1. P. 69–89. DOI: 10.1007/s10546-016-0217-y.
  11. Honnert R., Couvreux F., Masson V., Lancz D. Sampling the structure of convective turbulence and implications for grey-zone parametrizations // Bound.-Lay. Meteorol. 2016. V. 160, N 1. P. 133–156. DOI: 10.1007/s10546-016-0130-4.
  12. Gladkikh V.A., Nevzorova I.V., Odintsov S.L. Potoki tepla v prizemnom sloe atmosfery s razlozheniem iskhodnyh komponentov na razlichnye masshtaby // Optika atmosf. i okeana. 2021. V. 34, N 2. P. 129–142; Gladkikh V.A., Nevzorova I.V., Odintsov S.L. Heat fluxes in the surface air layer with decomposition of initial components into different scales // Atmos. Ocean. Opt. 2021. V. 34, N 6. P. 658–671. DOI: 10.1134/S1024856021060130.
  13. Atmosfernaya turbulentnost' i modelirovanie rasprostraneniya primesej // pod red. F.T.M. N'istadta, H. Van Dopa. L.: Gidrometeoizdat, 1985. 352 p.
  14. Gladkikh V.A., Nevzorova I.V., Odintsov S.L. Struktura poryvov vetra v prizemnom sloe atmosfery // Optika atmosf. i okeana. 2019. V. 32, N 4. P. 304–308. DOI: 10.15372/AOO20190408.
  15. Gladkih V.A., Makienko A.E. Tsifrovaya ul'trazvukovaya meteostantsiya // Pribory. 2009. N 7. P. 21–25.
  16. Sostav naibolee tsennogo oborudovaniya // IOA SO RAN. Tomsk, 2022. URL: https://www.iao.ru/ru/ structure/juc/equipment (data obrashcheniya: 30.03.2022).
  17. Odintsov S.L., Fedorov V.A. Issledovanie variatsij skorosti vetra mezometeorologicheskogo masshtaba po sodarnym nablyudeniyam // Optika atmosf. i okeana. 2007. V. 20, N 11. P. 986–993.
  18. Gladkikh V.A., Nevzorova I.V., Odintsov S.L. Statistika vneshnih masshtabov turbulentnosti v prizemnom sloe atmosfery // Optika atmosf. i okeana. 2019. V. 32, N 3. P. 212–220; Gladkikh V.A., Nevzorova I.V., Odintsov S.L. Statistics of outer turbulence scales in the surface air layer // Atmos. Ocean. Opt. 2019. V. 32, N 4. P. 450–458. DOI: 10.1134/S1024856019040055.
  19. Kadygrov E.N., Kuznetsova I.N. Metodicheskie rekomendatsii po ispol'zovaniyu dannyh distantsionnyh izmerenij profilej temperatury v pogranichnom sloe mikrovolnovymi profilemerami: teoriya i praktika. Dolgoprudnyj: Fizmatkniga, 2015. 171 p.
  20. Kadygrov E.N. Mikrovolnovaya radiometriya atmosfernogo pogranichnogo sloya – metod, apparatura, rezul'taty izmerenij // Optika atmosf. i okeana. 2009. V. 22, N 7. P. 697–704.