Vol. 35, issue 10, article # 1

Tarasenkov M. V., Belov V. V., Poznaharev E. S. Analysis of characteristics of an optical communication channel on scattered radiation with an unmanned aerial vehicle. // Optika Atmosfery i Okeana. 2022. V. 35. No. 10. P. 791–798. DOI: 10.15372/AOO20221001 [in Russian].
Copy the reference to clipboard
Abstract:

A model of an optical communication atmospheric channel on scattered radiation between the ground surface and an unmanned aerial vehicle (UAV) is considered. Changes in the useful signal attenuation, the minimum energy per source pulse providing the stable link, and the maximum information transfer rate versus the optical and geometrical conditions of forming the communication channel are estimated. Based on the results, recommendations are formulated for the choice of optimal schemes of optical communication systems on scattered radiation with UAV.

Keywords:

atmosphere, scattered laser radiation, NLOS optical communication, visible and UV wavelength regions, unmanned aerial vehicle

Figures:
References:

  1. Zhanwei Liu, Yiwen Huang, Haigang Liu, Xianfeng Chen. Non-line-of-sight optical communication based on orbital angular momentum // Opt. Lett. 2021. V. 46. P. 5112–5115.
  2. Hamza A., Deogun J.S., Alexander D. Classification framework for free space optical communication links and systems // IEEE Commun. Sur. & Tutorials. 2019. V. 21, N 2. P. 1346–1382. DOI: 10.1109/COMST.2018.2876805.
  3. Arya S., Chung Y.H. Novel Optical scattering-based V2V communications with experimental analysis // IEEE Trans. Intel. Transportation Syst. 2022. P. 1–15. DOI: 10.1109/TITS.2022.3145437.
  4. Drost R.J., Sadler B.M. Survey of ultraviolet non-line-of-sight communications // Semicond. Sci. Technol. 2014. V. 29, N 8. 11 p. DOI: 10.1088/0268-1242/29/8/084006.
  5. Dautov K., Kalikulov N., Kizilirmak R.C. The impact of various weather conditions on vertical FSO links // 2017 IEEE 11th Intern. Conf. Application of Information and Communication Technologies (AICT), 2017. P. 1–4. DOI: 10.1109/ICAICT.2017.8687029.
  6. Fawaz W., Abou-Rjeily C., Assi C. UAV-Aided Cooperation for FSO communication systems // IEEE Commun. Magazine. 2018. V. 56, N 1. P. 70–75. DOI: 10.1109/MCOM.2017.1700320.
  7. Mondal A., Hossain A. Channel characterization and performance analysis of unmanned aerial vehicle-operated communication system with multihop radio frequency–free-space optical link in dynamic environment // Int. J. Commun. Syst. 2020. V. 33, N 8. P. e4568. DOI: 10.1002/dac.4568.
  8. Dabiri M.T., Sadough S.M.S., Ansari I.S. Tractable optical channel modeling between UAVs // IEEE Trans. Veh. Technol. 2019. V. 68, N 12. P. 11543–11550. DOI: 10.1109/TVT.2019.2940226.
  9. Li M., Hong Y., Zeng C., Song Y., Zhang X. Investigation on the UAV-to-satellite optical communication systems // IEEE J. Select. Areas Commun. 2018. V. 36, N 9. P. 2128–2138. DOI: 10.1109/JSAC.2018.2864419.
  10. Mohorcic M., Fortuna C., Vilhar A., Horwath J. Evaluation of wavelength requirements for stratospheric optical transport networks // J. Commun. 2009. V. 4. P. 588–596. DOI: 10.4304/jcm.4.8.588-596.
  11. Abramochkin V.N., Belov V.V., Gridnev Yu.V., Kudryavtsev A.N., Tarasenkov M.V., Fedosov A.V. Optiko-elektronnaya svyaz' v atmosfere na rasseyannom lazernom izluchenii. Polevye eksperimenty // Svetotekhnika. 2017. N 4. P. 24–30.
  12. Belov V.V., Juwiler I., Blaunstein N., Tarasenkov M.V., Poznakharev E.S. NLOS communication: Theory and experiments in the atmosphere and underwater // Atmosphere. 2020. V. 11. P. 1122. DOI: 10.3390/atmos11101122.
  13. Belov V.V., Tarasenkov M.V. Tri algoritma statisticheskogo modelirovaniya v zadachah opticheskoj svyazi na rasseyannom izluchenii i bistaticheskogo zondirovaniya // Optika atmosf. i okeana. 2016. V. 29, N 5. P. 397–403; Belov V.V., Tarasenkov M.V. Three algorithms of statistical modeling in problems of optical communication on scattered radiation and bistatic sensing // Atmos. Ocean. Opt. 2016. V. 29, N 5. P. 533–540.
  14. Tarasenkov M.V., Belov V.V., Poznakharev E.S. Estimation of optimal wavelengths for atmospheric non-line-of-sight optical communication in the UV range of the spectrum in daytime and at night for baseline distances from 50 m to 50 km // J. Opt. Soc. Am. A. 2022. V. 39. P. 177–188.
  15. Jupeng Ding, Hongye Mei, Chih-Lin I., Hui Zhang, Wenwen Liu. Frontier progress of unmanned aerial vehicles optical wireless technologies // Sensors. 2020. V. 20, N 19. P. 5476. DOI: 10.3390/s20195476.
  16. Tadayyoni H., Uysal M. Ultraviolet communications for ground-to-air links // 27th Signal Proc. SIU, 2019. DOI: 10.1109/SIU.2019.8806490.
  17. Reilly D.M. Atmospheric optical communications in the middle ultraviolet. Thesis. M.S. (Massachusetts Institute of Technology, 1976). P. 23–31.
  18. Voigt S., Orphal J., Bogumil K., Burrows J.P. The temperature dependence (203–293 K) of the absorption cross-sections of O3 in the 230–850 nm region measured by Fourier-transform spectroscopy // J. Photochem. Photobiol. A: Chemistry. 2001. V. 143, N 1. P. 1–9. DOI: 10.1016/S1010-6030(01)00480-4.
  19. General Information // HITRAN. Cambridge, 2022. URL: hitran.iao.ru (last access: 26.03.2022).
  20. Kneizys F.X., Robertson D.C., Abreu L.W., Acharya P., Anderson G.P., Rothman L.S., Chetwynd J.H., Selby J.E.A., Shettle E.P., Gallery W.O., Berk A., Clough S.A., Bernstein L.S. The MODTRAN 2/3 Report and LOWTRAN 7 Model. USA: Air Force Geophysics Laboratory, 1996. 261 p.
  21. KATOD. Novosibirsk, 2022. URL: https://katodnv.com (data obrashcheniya: 26.03.2022).
  22. Ding H., Chen G., Majumdar A.K., Sadler B.M., Xu Z. Modeling of non-line-of-sight ultraviolet scattering channels for communication // IEEE J. Select. Areas Commun. 2009. V. 27, N 9. P. 1535–1544.
  23. Soboleva N.A., Melamid A.E. Fotoelektronnye pribory. M.: Vysshaya shkola, 1974. 376 p.
  24. Vasil'ev A.F., Chmutin A.M. Fotoelektricheskie priemniki izlucheniya. V.: VGU, 2010. 81 p.
  25. Chechik N.O., Fajnshtejn S.M., Lifshits T.M. Elektronnye umnozhiteli / pod red. D.V. Zernova. M.: GITTL, 1957. 576 p.
  26. Marchuk G.I., Mihajlov G.A., Nazaraliev M.A., Darbinyan R.A., Kargin B.A., Elepov B.S. Metod Monte-Karlo v atmosfernoj optike. Novosibirsk: Nauka, 1976. 284 p.
  27. Yu Sun, Yafeng Zhan. Closed-form impulse response model of non-line-of-sight single-scatter propagation // J. Opt. Soc. Am. A. 2016. V. 33. P. 752–757.
  28. International Commission on Non-Ionizing Radiation Protection. Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation) // Health Phys. 2004. V. 87. P. 171–186.