Vol. 35, issue 10, article # 9

Luzhetskaya A. P., Nagovitsyna E. S., Omelkova E. V., Poddubnyi V. A. Temporal variability and relationship between the surface concentration of PM2.5 and the aerosol optical depth according to measurements in the Middle Urals. // Optika Atmosfery i Okeana. 2022. V. 35. No. 10. P. 858–867. DOI: 10.15372/AOO20221009 [in Russian].
Copy the reference to clipboard
Abstract:

Measurements of aerosol parameters in the surface air layer with sets of Panasonic PM2.5 optical sensors and throughout the atmospheric column by the photometric method at urban and background observation sites in the Middle Urals for 2016–2019 are analyzed. The features of the intraannual and diurnal variations in aerosol parameters in the surface air layer and in the atmospheric column are compared. Correlations between the PM2.5 concentration, AOD, and meteorological parameters in the two regions are also studied. Multivariate regression models for estimating the logarithm of PM2.5 concentration ensure much higher quality than single-factor models. The significant predictors are determined: boundary layer height (blh, m), ln AOD, normalized relative vegetation index (NDVI), relative air humidity (Hu, %), and air pressure (P, Pa).

Keywords:

mass concentration of aerosol particles РМ2.5, aerosol optical depth, monitoring of the atmosphere, empirical statistical model, regression analysis, AERONET

References:

  1. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change / Masson-Delmotte V., Zhai P., Pirani A., Connors S.L., Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M.I., Huang M., Leitzell K., Lonnoy E., Matthews J.B.R., Maycock T.K., Waterfield T., Yelekçi O., Yu R., Zhou B. (eds.) Cambridge University Press, Cambridge, United Kingdom; New York, USA. In press. DOI: 10.1017/9781009157896.
2. Arden Pope C., Coleman N., Pond Z.A., Burnett R.T. Fine particulate air pollution and human mortality: 25+ years of cohort studies // Environ. Res. 2020. V. 183. P. 108924. DOI: 10.1016/j.envres.2019.108924. 3. Hoek G., Krishnan R.M., Beelen R., Peters A., Ostro B., Brunekreef B., Kaufman J.D. Long-term air pollution exposure and cardio-respiratory mortality: A review // Environ. Health. 2013. V. 12. Art. N 43. 4. Xing Y.F., Xu Y.H., Shi M.H., Lian Y.X. The impact of PM2.5 on the human respiratory system // J. Thorac. Dis. 2016. V. 8, N 1. P. E69–E74. DOI: 10.3978/ j.issn.2072-1439.2016.01.19. 5. Vohra K., Vodonos A., Schwartz J., Marais E.A., Sulprizio M.P., Mickley L.J. Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS Chem // Environ. Res. 2021. V. 195. P. 110754. DOI: 10.1016/j.envres. 2021.110754. 6. Konventsiya o transgranichnom zagryaznenii vozduha na bol'shie rasstoyaniya. [Elektronnyj resurs]. URL: https://un.org/ru/documents/decl_conv/conventions/ transboundary.shtml/ (data obrashcheniya: 19.06.2022). 7. Air Quality Guidelines: Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide, and Sulfur Dioxide World Health Organization, 2006. 484 p. 8. Sanitarnye pravila i normy SanPiN 1.2.3685-21 «Gigienicheskie normativy i trebovaniya k obespecheniyu bezopasnosti i (ili) bezvrednosti dlya cheloveka faktorov sredy obitaniya» I. Gigienicheskie normativy soderzhaniya zagryaznyayushchih veshchestv v atmosfernom vozduhe gorodskih i sel'skih poselenij. Predel'no dopustimye kontsentratsii (PDK) zagryaznyayushchih veshchestv v atmosfernom vozduhe gorodskih i sel'skih poselenij. 9. Kaufman Y.J., Tanr D. Algorithm for Remote Sensing of Tropospheric Aerosol from MODIS, Product ID MOD04. 1998. [Elektronnyj resurs]. URL: https:// modis-imaes.gsfc.nasa.gov/_docs/MOD04:MYD04_ATBD _C005_rev1.pdf (data obrashcheniya: 20.06.2022). 10. Remer L.A., Kaufman Y.J., Tanre D., Mattoo S., Chu D.A., Martins J.V., Li R.-R., Ichoku C., Levy R.C., Kleidman R.G., Eck T.F., Vermote E., Holben B.N. The MODIS aerosol algorithm, products, and validation // J. Atmos. Sci. 2005. V. 62. P. 947–973. 11. Engel-Cox J.A., Holloman C.H., Coutant B.W., Hoff R.M. Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality // Atmos. Environ. 2004. V. 38, iss. 16. P. 2495–2509. DOI: 10.1016/j.atmosenv.2004.01.039. 12. Wang J. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies // Geophys. Res. Lett. 2003. V. 21, N 30. DOI: 10.1029/2003GL018174. 13. Yang Q., Yuan Q., Yue L., Li T., Shen H., Zhang L. The relationships between PM2.5 and aerosol optical depth (AOD) in mainland China: About and behind the spatio-temporal variations // Environ Pollut. 2019. P. 248:526–535. DOI: 10.1016/j.envpol.2019.02.071. 14. Schaap M., Apituley A., Timmermans R.M.A., Koelemeijer R.B.A., de Leeuw G. Exploring the relation between aerosol optical depth and PM2.5 at Cabauw, the Netherlands // Atmos. Chem. Phys. 2009. V. 9, iss. 3. P. 909–925. DOI: 10.5194/acp-9-909-2009. 15. Koelemeijer R., Homan C.D., Matthijsen J. Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe // Atmos. Environ. 2006. V. 40. P. 5304–5315. DOI: 10.1016/j. atmosenv.2006.04.044. 16. Liu Y., Sarnat J.A., Kilaru A., Jacob D.J., Koutrakis P. Estimating ground-level PM2.5 in the eastern United States using satellite remote sensing // Environ. Sci. Technol. 2005.V. 39, N 9. P. 3269–3278. DOI: 10. 1021/es049352m. 17. Ahmad M., Alam K., Tariq S., Anwar S., Nasir J., Mansha M. Estimating fine particulate concentration using a combined approach of linear regression and artificial neural network // Atmos. Environ. 2019. V. 219. P. 117050. DOI: 10.1016/j.atmosenv.2019.117050. 18. Gupta P., Christopher S.A. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach // J. Geophys. Res. Atmos. 2009. N 114. Р. 1–13, DOI: 10.1029/2008J D0114 96. 19. Arhiv klimaticheskih dannyh Climatebase.ru [Elektronnyj resurs]. URL: http://climatebase.ru/station/ 23256 (data obrashcheniya: 1.07.2022). 20. Gosudarstvennyj doklad «O sostoyanii i ob ohrane okruzhayushchej sredy Sverdlovskoj oblasti v 2019 year». [Elektronnyj resurs]. Ofitsial'nyj sajt Ministerstva prirodnyh resursov i ekologii Sverdlovskoj oblasti.  URL: https://mprso.midural.ru/article/ show/id/1126 (data obrashcheniya 28.06.2022). 21. Kabanov D.M., Sakerin S.M., Turchinovich S.A. Solnechnyj fotometr dlya nauchnogo monitoringa (apparatura, metodiki, algoritmy) // Optika atmosf. i okeana. 2001. V. 14, N 12. P. 1162–1169. 22. Holben B.N., Eck T.F., Slutsker I., Tanre D., Buis J.P., Setzer A., Vermote E., Reagan J.A., Kaufman Y.J., Nakadjima T., Lavenu F., Jankowiak I., Smirnov A. AERONET – a federated instrument network and data archive for aerosol characterization // Rem. Sens. Env. 1998. V. 66, N 1. P. 1‒16. 23. Garcia O.E., Diaz J.P., Exposito F.J., Diaz A.M., Dubovik O., Dermian Y., Dubuisson P., Roger J.C. Shortwave radiative forcing and efficiency of key aerosol types using AERONET data // Atmos. Chem. Phys. 2012. V. 12. P. 5129 –5145. 24. Issledovanie radiatsionnyh harakteristik aerozolya v aziatskoj chasti Russia / S.M. Sakerin (red.). Tomsk: Izd-vo IOA SO RAN, 2012. 484 p. 25. Nakayama T., Matsumi Y., Kawahito K., Watabe Y. Development and evaluation of a palm-sized optical PM2.5 sensor // Aerosol Sci. Technol. 2018. V. 52, iss. 1. P. 2–12. DOI: 10.1080/02786826.2017.1375078. 26. Gubanova D.P., Belikov I.B., Elanskij N.F., Skorohod A.I., Chubarova N.E. Izmenchivost' prizemnoj kontsentratsii aerozolej PM2.5 v g. Moskve po nablyudeniyam v Meteorologicheskoj observatorii MGU // Optika atmosf. i okeana. 2017. V. 30, N 12. P. 1033–1042; Gubanova D.P., Belikov I.B., Elansky N.F., Skorokhod A.I., Chubarova N.E. Variations in PM2.5 surface concentration in Moscow according to observations at MSU Meteorological Observatory // Atmos. Ocean. Opt. 2018. V. 31, N 3. P. 290–299. 27. Poddubny V.A., Luzhetskaya A.P., Markelov Yu.I., Kabanov D.M. Otsenka vliyaniya goroda na aerozol'noe zamutnenie atmosfery po dannym dvuhtochechnyh izmerenij «fon‒promyshlennyj gorod» // Optika atmosf. i okeana. 2012. V. 25, N 4. PС. 319–326; Poddubny V.A., Luzhetskaya A.P., Markelov Yu.I., Kabanov D.M. Estimate of the urban effect on aerosol turbidity of the atmosphere according to data of two-point “background–industrial city” measurements // Atmos. Ocean. Opt. 2012. V. 25, N 5. P. 364–371.