Vol. 35, issue 11, article # 6

Banakh V. A., Falits A. V., Sherstobitov A. M., Smalikho I. N., Sukharev A. A., Gordeev E. V., Zaloznaya I. V. On estimation of the height of a turbulent mixing layer from the height-time distributions of the Richardson number. // Optika Atmosfery i Okeana. 2022. V. 35. No. 11. P. 912–917. DOI: 10.15372/AOO20221106 [in Russian].
Copy the reference to clipboard
Abstract:

The results of a comparison of the time series of the turbulent mixing layer height, which is determined from the height-time distributions of the kinetic energy dissipation rate of turbulence and from the height-time distributions of the gradient Richardson number are presented. It is found that only under conditions of atmospheric boundary layer instability due to convection, estimation of the height of the turbulent mixing layer from the height-time distributions of the Richardson number gives results close to those obtained from the distributions of the kinetic energy dissipation rate of turbulence. In other cases, the height of the mixing layer found from the Richardson number can be significantly underestimated.

Keywords:

wind lidar, temperature profiler, turbulent mixing layer height, Richardson number, turbulent energy dissipation rate

Figures:
References:

  1. Bonin T.A., Carroll B.J., Hardesty R.M., Brewer W.A., Hajny K., Salmon O.E., Shepson P.B. Doppler lidar observation of the mixing height in Indianapolis using an automated composite fuzzy logic approach // J. Atmos. Ocean. Technol. 2018. V. 35, N 3. P. 915–935.
  2. Hogan R.J., Grant A.L.M., Illingworth A.J., Pearson G.N., O’Connor E.J. Vertical velocity variance and skewness in clear and cloud-topped boundary layers as revealed by Doppler lidar // Q. J. R. Meteorol. Soc. 2009. V. 135, N 4. P. 635–643.
  3. Tucker S.C., Brewer W.A., Banta R.M., Senff C.J., Sandberg S.P., Law D.C., Weickmann A.M., Hardesty R.M. Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles // J. Atmos. Ocean. Technol. 2009. V. 26, N 4. P. 673–688.
  4. Pichugina Y.L., Banta R.M. Stable boundary layer depth from high-resolution measurements of the mean wind profile // J. Appl. Meteorol. Climatol. 2010. V. 49, N 1. P. 20–35.
  5. Barlow J.F., Dunbar T.M., Nemitz E.G., Wood C.R., Gallagher M.W., Davies F., O’Connor E., Harrison R.M. Boundary layer dynamics over London, UK, as observed using Doppler lidar during REPARTEE-II // Atmos. Chem. Phys. 2011. V. 11, N 3. P. 2111–2125.
  6. Schween J.H., Hirsikko A., Löhnert U., Crewell S. Mixing-layer height retrieval with ceilometer and Doppler lidar: From case studies to long-term assessment // Atmos. Meas. Tech. 2014. V. 7, N 4. P. 3685–3704.
  7. Vakkari V., O’Connor E.J., Nisantzi A., Mamouri R.E., Hadjimitsis D.G. Low-level mixing height detection in coastal locations with a scanning Doppler lidar // Atmos. Meas. Tech. 2015. V. 8, N 4. P. 1875–1885.
  8. Huang M., Gao Z., Miao S., Chen F., Lemone M.A., Li J., Hu F., Wang L. Estimate of boundary-layer depth over Beijing, China, using Doppler lidar data during SURF-2015 // Bound.-Lay. Meteorol. 2017. V. 162, N 9. P. 503–522.
  9. Banah V.A., Smaliho I.N., Falits A.V. Opredelenie vysoty sloya turbulentnogo peremeshivaniya vozduha iz lidarnyh dannyh o parametrah vetrovoj turbulentnosti // Optika atmosf. i okeana. 2021. V. 34, N 3. P. 169–184. DOI: 10.15372/AOO20210303.
  10. Gibert F., Arnault N., Cuesta J., Plougonven R.,Flamant P.H. Internal gravity waves convectively forced in the atmospheric residual layer during the morning transition // Q. J. R. Meteorol. Soc. 2011. V. 137. P. 1610–1624
  11. Helmis C.G., Sgouros G., Tombrou M., Schäfer K., Münkel C., Bossioli E., Dandou A. A comparative study and evaluation of mixing-height estimation based on Sodar-RASS, ceilometer data and numerical model simulations // Bound.-Lay. Meteorol. 2012. V. 145. P. 507–526. DOI: 10.1007/s10546-012-9743-4.
  12. Petenko I., Argentini S., Casasanta G., Genthon C., Kallistratova M. Stable surface-based turbulent layer during the polar winter at Dome C, Antarctica: Sodar and in situ observations // Bound.-Lay. Meteorol. 2019. V. 171. P. 101–128. DOI: 10.1007/s10546-018-0419-6
  13. Smalikho I.N., Banakh V.A. Measurements of wind turbulence parameters by a conically scanning coherent Doppler lidar in the atmospheric boundary layer // Atmos. Meas. Tech. 2017. V. 10. P. 4191–4208.
  14. O’Connor E.J., Illingworth A.J., Brooks I.M., Westbrook C.D., Hogan R.J., Davies F., Brooks B.J. A method for estimating the kinetic energy dissipation rate from a vertically pointing Doppler lidar, and independent evaluation from balloon-borne in situ measurements // J. Atmos. Ocean. Technol. 2010. V. 27, N 10. P. 1652–1664.
  15. Banakh V.A., Smalikho I.N., Falits A.V., Sherstobitov A.M. Estimating the parameters of wind turbulence from spectra of radial velocity measured by a pulsed Doppler lidar // Remote Sens. 2021. V. 13. Р. 2071. DOI: 10.3390/rs13112071.
  16. Baumert H.Z., Peters H. Turbulence closure: Turbulence, waves and the wave-turbulence transition – Part 1: Vanishing mean shear // Ocean Sci. 2009. V. 5. P. 47–58.
  17. Grachev A.A., Andreas E.L., Fairall Ch.W., Guest P.S., Ola P., Persson G. The critical richardson number and limits of applicability of local similarity theory in the stable boundary layer // Bound.-Lay. Meteorol. 2013. V. 147. P. 51–82.
  18. Banakh V.A, Smalikho I.N., Falits A.V. Wind-temperature regime and wind turbulence in a stable boundary layer of the atmosphere: Case study // Remote Sens. 2020. V. 12, N 955. DOI: 10.3390/rs12060955.
  19. Banakh V.A, Smalikho I.N, Falits A.V. Estimation of the height of the turbulent mixing layer from data of Doppler lidar measurements using conical scanning by a probe beam // Atmos. Meas. Tech. 2021. V. 14. P. 1511–1524. DOI: 10.5194/amt-14-1511-2021.