Vol. 35, issue 11, article # 8

Gladkikh V. A., Mamysheva A. A., Nevzorova I. V., Odintsov S. L. Analysis of derivatives in atmospheric hydrothermodynamics equations with the use of experimental data. Part 1: Equation for the temperature field. // Optika Atmosfery i Okeana. 2022. V. 35. No. 11. P. 923–931. DOI: 10.15372/AOO20221108 [in Russian].
Copy the reference to clipboard
Abstract:

The time and space derivatives of the air temperature and its products with the wind vector components are analyzed for the cases where the temperature and wind fields are resolved into the deterministic, meso-gamma scale, and turbulent parts. Ultrasonic thermoanemometer measurements in the surface air layer are used for the analysis. The variability ranges of the derivatives are estimated including meso-gamma scale variations in the temperature and wind fields. The variability ranges of these derivatives are compared with those of the “classical” derivatives (when only deterministic and turbulent parts are considered). The derivatives of the components which contain meso-gamma scales are shown to be comparable with the components which include only turbulent parts.

Keywords:

wind, meso-gamma scale, surface layer, gray zone, temperature, turbulence

References:

1. Lykosov V.N., Glazunov A.V., Kulyamin D.V., Mortikov E.V., Stepanenko V.M. Superkomp'yuternoe modelirovanie v fizike klimaticheskoj sistemy. M.: Izd-vo Mosk. un-ta, 2012. 406 p.
2. Volkov K.N., Emel'yanov V.N. Modelirovanie krupnyh vihrej v raschetah turbulentnyh techenij. M.: FIZMATLIT, 2008. 368 p.
3. Starchenko A.V., Kuzhevskaya I.V., Kizhner L.I., Barashkova N.K., Volkova M.A., Bart A.A. Otsenka uspeshnosti chislennogo prognoza elementov pogody po mezomasshtabnoj modeli atmosfery vysokogo razresheniya TSUNM3 // Optika atmosf. i okeana. 2019. V. 32, N 1. P. 57–61. DOI: 10.15372/AOO20190108.
4. Rivin G.S., Rozinkina I.A., Vil'fand R.M., Kiktev D.B., Tudrij K.O., Blinov D.V., Varentsov M.I., Zaharchenko D.I., Samsonov T.E., Repina I.A., Artamonov A.Yu. Razrabotka operativnoj sistemy chislennogo prognoza pogody i uslovij vozniknoveniya opasnyh yavlenij s vysokoj detalizatsiej dlya Moskovskogo megapolisa // Meteorol. i gidrol. 2020. N 7. P. 5–19.
5. Kealy J.C., Efstathiou G.A., Beare R.J. The onset of resolved boundary-layer turbulence at grey-zone resolutions // Bound.-Layer Meteorol. 2019. V. 171, N 1. P. 31–52. DOI: 10.1007/s10546-018-0420-0.
6. Lancz D., Szintai B., Honnert R. Modification of a parametrization of shallow convection in the grey zone using a mesoscale model // Bound.-Layer Meteorol. 2018. V. 169, N 3. P. 483–503. DOI: 10.1007/s10546-018-0375-1.
7. Honnert R., Couvreux F., Masson V., Lancz D. Sampling the structure of convective turbulence and implications for grey-zone parametrizations // Bound.-Layer Meteorol. 2016. V. 160, N 1. P. 133–156. DOI: 10.1007/s10546-016-0130-4.
8. Doubrawa P., Muñoz-Esparza D. Simulating real atmospheric boundary layers at gray-zone resolutions: How do currently available turbulence parameterizations perform? // Atmosphere. 2020. V. 11, N 4(345). DOI: 10.3390/atmos11040345.
9. Blackman K., Perret L., Savory E. Effects of the upstream-flow regime and canyon aspect ratio on non-linear interactions between a street-canyon flow and the overlying boundary layer // Bound.-Layer Meteorol. 2018. V. 169, N 3. P. 537–558. DOI: 10.1007/s10546-018-0378-y.
10. Inagaki A., Kanda M. Organized structure of active turbulence over an array of cubes within the logarithmic layer of atmospheric flow // Bound.-Layer Meteorol. 2010. V. 135, N 2. P. 209–228. DOI: 10.1007/s10546-010-9477-0.
11. Boyko V., Vercauteren N. Multiscale shear forsing of turbulence in the nocturnal boundary layer: A statistical analysis // Bound.-Layer Meteorol. 2021. V. 179, N 1. P. 43–72. DOI: 10.1007/s10546-020-00583-0.
12. Rai R.K., Berg L.K., Kosovic B., Mirocha J.D., Pekour M.S., Shaw W.J. Comparison of measured and numerically simulated turbulence statistics in a convective boundary layer over complex terrain // Bound.-Layer Meteorol. 2017. V. 163, N 1. P. 69–89.
13. De Bode M., Hedde T., Roubin P., Durand P. Fine-resolution WRF simulation of stably stratified flows in shallow pre-alpine valleys: A case study of the KASCADE-2017 campaign // Atmosphere. 2021. V. 12, N 8(1063). DOI: 10.3390/atmos12081063.
14. Atmosfernaya turbulentnost' i modelirovanie rasprostraneniya primesej // pod red. F.T.M. N'istadta i H. Van Dopa. L.: Gidrometeoizdat, 1985. 352 p.
15. Gladkih V.A., Nevzorova I.V., Odintsov S.L. Struktura poryvov vetra v prizemnom sloe atmosfery // Optika atmosf. i okeana. 2019. V. 32, N 4. P. 304–308. DOI: 10.15372/AOO20190408.
16. Gladkih V.A., Mamysheva A.A., Nevzorova I.V., Odintsov S.L. Sravnenie vkladov turbulentnyh i mezomasshtabnyh protsessov v pole vetra prizemnogo sloya atmosfery // Optika atmosf. i okeana. Fizika atmosf.: Materialy XXVIII Mezhdunarodnogo simpoziuma. 4–8 july 2022 year, Tomsk. (in print).
17. Gladkikh V.A., Nevzorova I.V., Odintsov S.L. Потоки тепла в приземном слое атмосферы с разложением исходных компонентов на различные масштабы // Оптика атмосф. и океана. 2021. V. 34, N 2. P. 129–142; Gladkikh V.A., Nevzorova I.V., Odintsov S.L. Heat fluxes in the surface air layer with decomposition of initial components into different scales // Atmos. Ocean. Opt. 2021. V. 34, N 6. P. 658–671.
18. Gladkih V.A., Makienko A.E. TSifrovaya ul'trazvukovaya meteostantsiya // Pribory. 2009. N 7. P. 21–25.
19. Arshinov M.Yu, Belan D.B., Davydov D.K., Savkin D.E., Slyadneva T.K., Tolmachev G.N., Fofonov A.V. Mezomasshtabnye razlichiya v kontsentratsii ozona v prizemnom sloe vozduha v Tomskom regione (2010–2012 years) // Tr. IOFAN. 2015. V. 71. P. 106–117.
20. Odintsov S.L., Fedorov V.A. Issledovanie variatsij skorosti vetra mezometeorologicheskogo masshtaba po sodarnym nablyudeniyam // Optika atmosf. i okeana. 2007. V. 20, N 11. P. 986–993.
21. Gladkikh V.A., Nevzorova I.V., Odintsov S.L. Statistika vneshnih masshtabov turbulentnosti v prizemnom sloe atmosfery // Optika atmosf. i okeana. 2019. V. 32, N 3. P. 212–220; Gladkikh V.A., Nevzorova I.V., Odintsov S.L. Statistics of outer turbulence scales in the surface air layer // Atmos. Ocean. Opt. 2019. V. 32, N 4. P. 450–458.
22. Gladkikh V.A., Nevzorova I.V., Odintsov S.L.
Otsenka i sravnenie smeshannyh momentov komponentov vektora vetra turbulentnogo i mezometeorologicheskogo masshtaba v prizemnom sloe atmosfery // Optika atmosf. i okeana. 2022. V. 35, N 9. P. 735–747.