Vol. 35, issue 12, article # 10

Firsov K. M., Chesnokova T. Yu., Razmolov A. A. Impact of the water vapor continuum absorption on the CO2 radiative forcing in the atmosphere for Lower Volga Region. // Optika Atmosfery i Okeana. 2022. V. 35. No. 12. P. 1029–1035. DOI: 10.15372/AOO20221210 [in Russian].
Copy the reference to clipboard
Abstract:

The impact of the water vapor continuum absorption in the atmosphere on CO2 radiative forcing is estimated on the basis of mass calculations of thermal radiative fluxes for summer conditions in 2021 in the Lower Volga Region. The set of 368 vertical atmospheric profiles (four realizations per day during three summer months) was used for the simulation. It was shown that the humidity growth decreases the CO2 contribution to radiative impact on the Earth’s surface, which leads to weaker heating of the surface and stronger heating of the atmosphere. Thus, greenhouse effect reinforcement due to the CO2 concentration increase at high humidity will lead to greater heating of the atmosphere. The water vapor continuum plays a dominating role in this process, but not selective absorption in H2O bands.

Keywords:

atmospheric radiative transfer, carbon dioxide, water vapor continuum, radiative forcing

References:

  1. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change / V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, B. Zhou (eds.). Cambridge: Cambridge University Press, 2021. DOI: 10.1017/9781009157896.
  2. Forster P., Ramaswamy V., Artaxo P., Berntsen T., Betts R., Fahey D.W., Haywood J., Lean J., Lowe D.C., Myhre G., Nganga J., Prinn R., Raga G., Schulz M., Van Dorland R. Changes in Atmospheric Constituents and in Radiative Forcing // Climate Change 2007. Cambridge: Cambridge University Press, 2007. P. 129–234.
  3. Kiehl J.T., Ramanathan V. Radiative heating due to increased CO2: The role of H2O continuum absorption in the 12 and 18 mm region // J. Atmos. Sci. 1982. V. 39. P. 2923–2926. DOI: 10.1175/1520-0469.
  4. Paynter D.J., Ramaswamy V. An assessment of recent water vapor continuum measurements upon longwave and shortwave radiative transfer // J. Geophys. Res. 2011. V. 116. P. D20302. DOI: 10.1029/2010JD015505.
  5. Paynter D.J., Ramaswamy V. Variations in water vapor continuum radiative transfer with atmospheric conditions // J. Geophys. Res. 2012. V. 117. P. D16310. DOI: 10.1029/2012JD017504.
  6. Михайлова В.А., Феськов С.В., Иванов А.И., Греков Л.И., Литинский А.О., Конобеева Н.Н., Белоненко М.Б, Фирсов К.М., Чеснокова Т.Ю., Порхун В.И., Иванченко Г.С., Лебедева О.С., Лебедев Н.Г., Завьялов В.Д., Крючков С.И. Моделирование неравновесных химико-физических процессов. Волгоград: Изд-во ВолГУБ, 2018. 256 с.
  7. Mlawer E.J., Payne V.H., Moncet J.-L., Delamere J.S., Alvarado M.J., Tobin D.C. Development and recent evaluation of the MT_CKD model of continuum absorption // Phil. Trans. R. Soc. A. 2012. V. 370. P. 2520–2556.
  8. Baranov Yu.I., Lafferty W.J., Ma Q., Tipping R.H. Water-vapor continuum absorption in the 800–1250 cm-1 spectral region at temperatures from 311 to 363 K // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109. P. 2291–2302.
  9. Baranov Yu., Lafferty W.J. The water-vapor continuum and selective absorption in the 3–5 mm spectral region at temperatures from 311 to 363 K // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 1304–1313.
  10. Baranov Yu.I., Lafferty W.J. The water vapour self- and water-nitrogen continuum absorption in the 1000 and 2500 cm-1 atmospheric windows // Phil. Trans. R. Soc. A. 2012. V. 370. P. 2578–2589.
  11. Anderson G., Clough S., Kneizys F., Chetwynd J., Shettle E. AFGL Atmospheric Constituent Profiles (0–120 km). AFGL-TR-86-0110. Environmental Research Paper. N 954. Hanscom AFB: MA 01736. 1986. 25 p.
  12. Gordon I.E., Rothman L.S., Hill C., Kochanov R.V., Tana Y., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Perevalov V.I., Perrin A., Shine K.P., Smith M.-A.H., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Barbe A., Császár A.G., Devi V.M., Furtenbacher T., Harrison J.J., Hartmann J.-M., Jolly A., Johnson T.J., Karman T., Kleiner I., Kyuberis A.A., Loos J., Lyulin O.M., Massie S.T., Mikhailenko S.N., Moazzen-Ahmadi N., Müller H.S.P., Naumenko O.V., Nikitin A.V., Polyansky O.L., Rey M., Rotger M., Sharpe S.W., Sung K., Starikova E., Tashkun S.A., Vander Auwera J., Wagner G., Wilzewski J., Wcisło P., Yu S., Zak E.J. The HITRAN2016 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 203. P. 3–69. DOI: 10.1016/j.jqsrt.2017.06.038.
  13. Tipping R.H., Ma Q. Theory of the water vapor continuum and validations // Atmos. Res. 1995. V. 36. P. 69–94.
  14. Nesmelova L.I., Rodimova O.B., Tvorogov S.D. Kontur spektral'noj linii i mezhmolekulyarnoe vzaimodejstvie. Novosibirsk: Nauka, 1986. 213 p.
  15. Scribano Y., Leforestier C. Contribution of water dimer absorption to the millimeter and far infrared atmospheric water continuum // J. Chem. Phys. 2007. V. 126, N 23. P. 234301.
  16. Vigasin A.A. Water vapor continuum absorption in various mixtures: Possible role of weakly bound complexes // J. Quant. Spectrosc. Radiat. Transfer. 2000. V. 64. P. 25–40.
  17. Ptashnik I.V., Shine K.P., Vigasin A.A. Water vapour self-continuum and water dimers: 1. Analysis of recent work // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 1286–1303. DOI: 10.1016/j.jqsrt.2011.01.012.
  18. Tretyakov M.Y., Koshelev M.A., Serov E.A., Parshin V.V., Odintsova T.A., Bubnov G.M. Dimer vody i atmosfernyj kontinuum // Uspekhi fiz. nauk. 2014. V. 184. P. 1199–1215. DOI: 10.3367/UFNr.0184.201411c.1199.
  19. Burch D.E., Alt R.L. Continuum absorption by H2O in the 700–1200 cm-1 and 2400–2800 cm-1 windows // Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL. United States Air Force, Hanscom AFB: Massachusetts 01731. 1984. 31 p.
  20. Burch D.E. Investigation of the absorption of infrared radiation by atmospheric gases // Semi-Annual Technical Report. Philco-Ford Corporation, Aeronutronic Division, Newport Beach, CA. 1970. Rept. U-4784.
  21. Burch D.E., Gryvnak D.A. Method of calculating H2O transmission between 333 and 633 cm-1. Report. 1979. P. 1–50.
  22. Roberts R.E., Selby J.E.A., Biberman L.M. Infrared continuum absorption by atmospheric water vapor in the 8–12 micron meter window // Appl. Opt. 1976. V. 15. P. 2085–2090.
  23. Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.P., Williams R.G. Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements // J. Geophys. Res. 2011. V. 116. P. D16305.
  24. Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapour foreign continuum absorption in near-infrared windows from laboratory measurements // Phil. Trans. R. Soc. 2012. V. 370. P. 2557–2577.
  25. Shine K.P., Ptashnik I.V., Rädel G. The water vapor continuum: Brief history and recent developments // Surv. Geophys. 2012. V. 33. P. 535–555. DOI: 10.1007/s10712-011-9170-y.
  26. Firsov K.M., Chesnokova T.Yu., Klitochenko I.I. Vklad kontinual'nogo pogloshcheniya N2O v potoki dlinnovolnovogo izlucheniya oblachnoj i bezoblachnoj atmosfery // Optika atmosf. i okeana. 2016. V. 29, N 10. P. 843–849.
  27. Chesnokova T.Yu., Firsov K.M., Razmolov A.A. Vklad kontinual'nogo pogloshcheniya vodyanogo para v radiatsionnyj balans atmosfery pri nalichii peristyh oblakov // Optika atmosf. i okeana. 2018. V. 31, N 9. P. 743–751; Chesnokova T.Yu., Firsov K.M., Razmolov A.A. Contribution of the water vapor continuum absorption to the radiation balance of the atmosphere with cirrus clouds // Atmos. Ocean. Opt. 2019. V. 32, N 1. P. 64–71.
  28. Rädel G., Shine K.P., Ptashnik I.V. Global radiative and climate effect of the water vapor continuum at visible and near-infrared wavelengths // Q. J. R. Meteorol. Soc. 2015. V. 141. P. 727–738. DOI: 10.1002/qj.2385.
  29. Zuev V.E., Komarov V.S. Statisticheskie modeli temperatury i gazovyh komponent atmosfery. L.: Gidrometeoizdat, 1986. 264 p.
  30. Timofeev Yu.M., Vasil'ev A.V. Teoreticheskie osnovy atmosfernoj optiki. SPb.: Nauka, 2003. 474 p.
  31. Lacis A.A., Oinas V. A description of the k-distribution methods for modelling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres // J. Geophys. Res. 1991. V. 96, N D5. P. 9027–9063.
  32. Tvorogov S.D. Nekotorye aspekty zadachi o predstavlenii funktsii propuskaniya v ryad eksponent // Optika atmosf. i okeana. 1994. V. 7, N 3. P. 315–326.
  33. Mitsel' A.A., Ptashnik I.V., Firsov K.M., Fomin B.A. Effektivnyj metod polinejnogo scheta propuskaniya pogloshchayushchej atmosfery // Optika atmosf. i okeana. 1995. V. 8, N 10. P. 1547–1551.
  34. ECMWF ERA-5. https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 (last access: 9.07.2022).