Abstract:
The ranges of changes in the parameters of wind and temperature (refractive) turbulence estimated from lidar data, corresponding to the intensity of aircraft shaking severity caused by turbulence in the free atmosphere at flight altitudes, are determined. It is shown that both the estimation of the variance of the radial velocity measured by a coherent lidar in the direction of flight, and the determination of the structural constant of the refractive index from the data of the lidar, which measures the intensity of refractive turbulence in flight direction, make it possible to judge the potential danger of aircraft shaking severity in clear air turbulence zones ahead of the aircraft.
Keywords:
clear air turbulence, wind lidar, turbulent energy dissipation rate, radial velocity variance, structural constant of turbulent fluctuations of the refractive index
Figures:
References:
- Vinnichenko N.K., Pinus N.Z., Shmeter S.M., SHur G.N. Turbulentnost' v svobodnoj atmosfere. L.: Gidrometeoizdat, 1976. 288 p.
- Smalikho I.N., Banakh V.A. Measurements of wind turbulence parameters by a conically scanning coherent Doppler lidar in the atmospheric boundary layer // Atmos. Meas. Tech. 2017. V. 10, N 11. P. 4191–4208.
- Banakh V.A., Smalikho I.N., Falits A.V., Sherstobitov A.M. Estimating the parameters of wind turbulence from spectra of radial velocity measured by a pulsed Doppler lidar // Remote Sens. 2021. V. 13. P. 2071.
- Banah V.A., Verner H., Smaliho I.N. Zondirovanie turbulentnosti yasnogo neba doplerovskim lidarom. Chislennoe modelirovanie // Optika atmosf. i okeana. 2001. V. 14, N 10. P. 932–937.
- Henderson S.W., Hale Ch.P., Magee J.R., Kavaya M.J., Huffaker A.V. Eye-safe coherent laser radar system at 2 mm using Tm. Ho: YAG lasers // Opt. Lett. 1991. V. 16. P. 773–775.
- Smalikho I.N., Banakh V.A. Tochnost' otsenivaniya skorosti dissipatsii energii turbulentnosti iz izmerenij vetra impul'snym kogerentnym doplerovskim lidarom pri konicheskom skanirovanii zondiruyushchim puchkom. Part I. Algoritm obrabotki lidarnyh dannyh // Optika atmosf. i okeana. 2013. V. 26, N 3. P. 213–219; Smalikho I.N., Banakh V.A. Accuracy of estimation of the turbulent energy dissipation rate from wind measurements with a conically scanning pulsed coherent Doppler Lidar. Part I. Algorithm of data processing // Atmos. Ocean. Opt. 2013. V. 26, N 5. P. 404–410.
- Banakh V.A., Smalikho I.N., Falits V.A. Estimation of the turbulence energy dissipation rate in the atmospheric boundary layer from measurements of the radial wind velocity by micropulse coherent Doppler lidar // Opt. Express. 2017. V. 25, N 19. P. 22679–22692.
- Banakh V.A., Smalikho I.N., Falits V.A. Opredelenie vysoty sloya turbulentnogo peremeshivaniya vozduha iz lidarnyh dannyh o parametrah vetrovoj turbulentnosti // Optika atmosf. i okeana. 2021. V. 34, N 3. P. 169–184. DOI: 10.15372/AOO20210303.
- Gurvich A.S. Lidarnoe zondirovanie turbulentnosti na osnove effekta usileniya obratnogo rasseyaniya // Izv. RAN. Fiz. atmosf. i okeana. 2012. V. 48, N 6. P. 655–665.
- Vrancken P., Wirth M., Ehret G., Barny H., Rondeau P., Veerman H. Airborne forward-pointing UV Rayleigh lidar for remote clear air turbulence detection: System design and performance // Appl. Opt. 2016. V. 55, N 32. P. 9314–9328. DOI: 10.1364/AO.55.0093146.
- Hauchecorne A., Cot Ch., Dalaudier F., Porteneuve J., Gaudo T., Wilson R., Cénac C., Laqui Ch., Keckhut P., Perrin J.-M., Dolfi A., Cézard N., Lombard L., Besson C. Tentative detection of clear-air turbulence using a ground-based Rayleigh lidar // Appl. Opt. 2016. V. 55, N 13. P. 3420–3428. DOI: 10.1364/AO.55.003420.
- Tatarskij V.I. Rasprostranenie voln v turbulentnoj atmosfere. M.: Nauka, 1967. 548 p.
- Zilitinkevich S.S. Atmosfernaya turbulentnost' i planetarnye pogranichnye sloi. M.: Fizmatlit, 2013. 246 p.