Vol. 35, issue 12, article # 9

Arshinov M. Yu., Belan B. D., Davydov D. K., Kozlov A. V., Fofonov A. V. Soil-atmosphere greenhouse gas fluxes in the meadow of a background area of the Tomsk region (West Siberia). // Optika Atmosfery i Okeana. 2022. V. 35. No. 12. P. 1021–1028. DOI: 10.15372/AOO20221209 [in Russian].
Copy the reference to clipboard
Abstract:

The work is devoted to the study of the dynamics of greenhouse gas flows, which were measured from 2017 to 2021 at the Background Observatory of Institute of Atmospheric Optics SB RAS. It is shown that the annual average SO2 flows at the observatory varied from -283 mg × m-2 × h-1 (runoff) to +31 mg × m-2 × h-1 (emission). The minimum emission of 1351 mg × m-2 × h-1 was recorded in 2019 and the maximum emission of 1789 mg × m-2 × h-1 in 2021. The lowest runoff was observed in 2017 (2099 mg × m-2 × h-1). The largest, equal to 2304 mg × m-2 × h-1, was in 2018. The annual average methane fluxes ranged from -0.032 mg × m-2 × h-1 in 2018 to -0.047 mg × m-2 × h-1 in 2020. The maximum methane emission was recorded in 2018 and was equal to 0.915 mg × m-2 × h-1, and the minimum in 2021 was only 0.095 mg × m-2 × h-1. At the same time, the maximum runoff in the interannual variability varied in a narrower range from -0.241 to -0.361 mg × m-2 × h-1. Unlike SO2 and SN4, the soil of the measurement area turned out to be a weak source of N2O. The annual average fluxes of this gas were in the range 0.00–0.011 mg × m-2 × h-1. Internal maximum emissions from 0.237 to 0.301 mg × m-2 × h-1 and runoffs from -0.206 to -0.245 mg × m-2 × h-1 also changed little.

Keywords:

atmosphere, air, nitrogen dioxide, sulfur dioxide, carbon dioxide, methane, ozone, nitrogen oxide, carbon monoxide, flux

Figures:
References:

  1. O’Grady C. Warming of 1.5 °C carries risk of crossing climate tipping points // Science. 2022. V. 377, N 6611. P. 1135.
  2. McKay D.I.A., Staal A., Abrams J.F., Winkelmann R., Sakschewski B., Loriani S., Fetzer I., Cornell S.E., Rockström J., Lenton T.M. Exceeding 1.5 °C global warming could trigger multiple climate tipping points // Science. 2022. V. 377, N 6611. P. 1171.
  3. IPCC, 2021: Summary for Policymakers // Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2021. P. 1–41.
  4. World Meteorological Organization Global Atmosphere Watch Implementation Plan: 2016–2023. Report No 228. WMO, 2017. 75 p.
  5. Andrews A.E., Kofler J.D., Trudeau M.E., Williams J.C., Neff D.H., Masarie K.A., Chao D.Y., Kitzis D.R., Novelli P.C., Zhao C.L., Dlugokencky E.J., Lang P.M., Crotwell M.J., Fischer M.L., Parker M.J., Lee J.T., Baumann D.D., Desai A.R., Stanier C.O., De Wekker S.F.J., Wolfe D.E., Munger J.W., Tans P.P. CO2, CO, and CH4 measurements from tall towers in the NOAA Earth System Research Laboratory’s Global Greenhouse Gas Reference Network: Instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts // Atmos. Meas. Tech. 2014. V. 7, N 2. P. 647–687.
  6. Higuchi K., Worthy D., Chan D., Shashkov A. Regional source/sink impact on the diurnal, seasonal and inter-annual variations in atmospheric CO2 at a boreal forest site in Canada // Tellus B. 2003. V. 55, N 2. P. 115–125.
  7. Sun Y., Yin H., Wang W., Shan C., Notholt J., Palm M., Liu K., Chen Z., Liu C. Monitoring greenhouse gases (GHGs) in China: Status and perspective // Atmos. Meas. Tech. 2022. V. 15, N 16. P. 4819–4834.
  8. Kadygrov N., Broquet G., Chevallier F., Rivier L., Gerbig C., Ciais P. On the potential of the ICOS atmospheric CO2 measurement network for estimating the biogenic CO2 budget of Europe // Atmos. Chem. Phys. 2015. V. 15, N 22. P. 12765–12787.
  9. Kulmala M., Lappalainen H.K., Petäjä T., Kurten T., Kerminen V.-M., Viisanen Y., Hari P., Sorvari S., Bäck J., Bondur V., Kasimov N., Kotlyakov V., Matvienko G., Baklanov A., Guo H.D., Ding A., Hansson H.-C., Zilitinkevich S. Introduction: The Pan-Eurasian Experiment (PEEX) – multidisciplinary, multiscale and multicomponent research and capacity-building initiative // Atmos. Chem. Phys. V. 15, N 22. P. 13085–13096.
  10. Starkweather S., Larsen J.R., Kruemmel E., Eicken H., Arthurs D., Bradley A.C., Carlo N., Christensen T., Daniel R., Danielsen F., Kalhok S., Karcher M., Johansson M., Jóhannsson J., Kodama Y., Lund S., Murray M.S., Petäjä T., Pulsifer P.L., Sandven S., Sankar R.D., Strahlendorff M., Wilkinson J. Sustaining Arctic Observing Networks’ (SAON) Roadmap for Arctic Observing and Data Systems (ROADS) // Arctic. 2021. V. 74, suppl. 1. P. 56–68.
  11. Pallandt M.M.T.A., Kumar J., Mauritz M., Schuur E.A.G., Virkkala A.-M., Celis G., Hoffman F.M., Göckede M. Representativeness assessment of the pan-Arctic eddy covariance site network and optimized future enhancements // Biogeosci. 2022. V. 19, N 3. P. 559–583.
  12. Glagolev M.V. Annotirovannyj spisok literaturnyh istochnikov po rezul'tatam izmerenij potokov СН4 i СО2 iz bolot Rossii // Dinamika okruzhayushchej sredy i global'nye izmeneniya klimata. 2010. V. 1, N 2. P. 5–57.
  13. Alferov A.M., Blinov V.G., Gitarskij M.L., Grabar V.A., Zamolodchikov D.G., Zinchenko A.V., Ivanova N.P., Ivahov V.M., Karabanyu R.T., Karelin D.V., Kalyuzhnyj I.L., Kashin F.V., Konyushkov D.E., Korotkov V.N., Krovotyntsev V.A., Lavrov S.A., Marunich A.S., Paramonova N.N., Romanovskaya A.A., Trunov A.A., Shilkin A.V., Yuzbekov A.K. Monitoring potokov parnikovyh gazov v prirodnyh ekosistemah. Saratov: Amirit, 2017. 279 p.
  14. Grant R.F., Roulet N.T. Methane efflux from boreal wetlands: Theory and testing of the ecosystem model Ecosys with chamber and tower flux measurements // Global Biogeochem. Cycles. 2002. V. 16, N 4. P. 1054. DOI: 10.1029/2001GB001702.
  15. Smagin A.V., Glagolev M.V., Suvorov G.G., Shnyrev N.A. Metody issledovaniya potokov gazov i sostava pochvennogo vozduha v polevyh usloviyah s ispol'zovaniem portativnogo gazoanalizatora PGA-7 // Vestn. MGU. Ser. Pochvovedenie. 2003. N 3. P. 29–36.
  16. Glagolev M.V. K metodu «obratnoj zadachi» dlya opredeleniya poverhnostnoj plotnosti potoka gaza iz pochvy // Dinamika okruzhayushchej sredy i global'nye izmeneniya klimata. 2010. V. 1, N 1. P. 17–36.
  17. Pavelka P., Acosta M., Kiese R., Altimir N., Brümmer C., Crill P., Darenova E., Fuß R., Gielen B., Graf A., Klemedtsson L., Lohila A., Longdoz B., Lindroth A., Nilsson M., Jiménez S.M., Merbold L., Montagnani L., Peichl M., Mari Pihlatie M., Pumpanen J., Ortiz P.S., Silvennoinen H., Skiba U., Vestin P., Weslien P., Janous D., Kutsch W. Standardisation of chamber technique for CO2, N2O, and CH4 fluxes measurements from terrestrial ecosystems // Int. Agrophys. 2018. V. 32, N 12. P. 569–587.
  18. Riederer M., Serafimovich A., Foken T. Net ecosystem CO2 exchange measurements by the closed chamber method and the eddy covariance technique and their dependence on atmospheric conditions // Atmos. Meas. Tech. 2014. V. 7, N 4. P. 1057–1064.
  19. You Y., Staebler R.M., Moussa S.G., Beck J., Mittermeier R.L. Methane emissions from an oil sands tailings pond: A quantitative comparison of fluxes derived by different methods // Atmos. Meas. Tech. 2021. V. 14, N 3. P. 1879–1892.
  20. Wang X., Wang C., Bond-Lamberty B. Quantifying and reducing the differences in forest CO2-fluxes estimated by eddy covariance, biometric and chamber methods: A global synthesis // Agric. For. Meteorol. 2017. V. 247. P. 93–103.
  21. Wang K., Liu C., Zheng X., Pihlatie M., Li B., Haapanala S., Vesala T., Liu H., Wang Y., Liu G., Hu F. Comparison between eddy covariance and automatic chamber techniques for measuring net ecosystem exchange of carbon dioxide in cotton and wheat fields // Biogeosci. 2013. V. 10, N 11. P. 6865–6877.
  22. Almand-Hunter B.B., Walker J.T., Masson N.P., Hafford L., Hannigan M.P. Development and validation of inexpensive, automated, dynamic flux chambers // Atmos. Meas. Tech. 2015. V. 8, N 1. P. 267–280.
  23. Antonovich V.V., Antokhin P.N., Arshinov M.Yu., Belan B.D., Balin Yu.S., Davydov D.K., Ivlev G.A., Kozlov A.V., Kozlov V.S., Kokhanenko G.P., Novoselov M.M., Panchenko M.V., Penner I.E., Pestunov D.A., Savkin D.E., Simonenkov D.V., Tolmachev G.N., Fofonov A.V., Chernov D.G., Smargunov V.P., Yausheva E.P., Paris J.-D., Ancellet G., Law K.S., Pelon J., Machida T., Sasakawa M. Station for the comprehensive monitoring of the atmosphere at Fonovaya Observatory, West Siberia: Current status and future needs // Proc. SPIE. 2018. V. 10833. P. 108337Z. DOI: 10.1117/12.2504388.
  24. Avtomaticheskaya kamera dlya izmereniya potokov parnikovyh gazov na poverhnosti razdela «pochva – atmosfera». Belan B.D., Arshinov M.Yu., Davydov D.K., Kozlov A.V., Ivlev G.A. Patent na poleznuyu model N 169373 ot 15 march 2017 year.
  25. Friedlingstein P., Jones M.W., OSullivan M., Andrew R.M., Hauck J., Peters G.P., Peters W., Pongratz J., Sitch S., Le Quéré C., Bakker D.C.E., Canadell J.G., Ciais P., Jackson R.B., Anthoni P., Barbero L., Bastos A., Bastrikov V., Becker M., Bopp L., Buitenhuis E., Chandra N., Chevallier F., Chini L.P., Currie K.I., Feely R.A., Gehlen M., Gilfillan D., Gkritzalis T., Goll D.S., Gruber N., Gutekunst S., Harris I., Haverd V., Houghton R.A., Hurtt G., Ilyina T., Jain A.K., Joetzjer E., Kaplan J.O., Kato E., Goldewijk K.K., Korsbakken J.I., Landschützer P., Lauvset S.K., Lefèvre N., Lenton A., Lienert S., Lombardozzi D., Marland G., McGuire P.C., Melton J.R., Metzl N., Munro D.R., Nabel J.E.M.S., Nakaoka S.-I., Neill C., Omar A.M., Ono T., Peregon A., Pierrot D., Poulter B., Rehder G., Resplandy L., Robertson E., Rödenbeck C., Séférian R., Schwinger J., Smith N., Tans P.P., Tian H., Tilbrook B., Tubiello F.N., van der Werf G.R., Wiltshire A.J., Zaehle S. Global Carbon Budget 2019 // Earth Syst. Sci. Data. 2019. V. 11, N 4. P. 1783–1838.
  26. Keenan T.F., Luo X., De Kauwe M.G., Medlyn B.E., Prentice I.C., Stocker B.D., Smith N.G., Terrer C., Wang H., Zhang Y., Zhou S. A constraint on historic growth in global photosynthesis due to increasing CO2 // Nature. 2021. V. 600, N 7888. P. 253–257.
  27. Wehr R., Munger J.W., McManus J.B., Nelson D.D., Zahniser M.S., Davidson E.A., Wofsy S.C., Saleska S.R. Seasonality of temperate forest photosynthesis and daytime respiration // Nature. 2016. V. 534, N 7609. P. 680–683.
  28. Mishustin E.N. Krugovorot azota i ego soedinenij v prirode. Rol' mikroorganizmov v krugovorote gazov v prirode. M.: Nauka, 1979. P. 68–91.
  29. Schindlbacher A., Zechmeister-Boltenstern S., Butterbach-Bahl K. Effects of soil moisture and temperature on NO, NO2, and N2O emissions from European forest soil // J. Geophys. Res. 2004. V. 109. P. D17302. DOI: 10.1029/2004JD004590.
  30. Pilegaard K., Skiba U., Ambus P., Beier C., Brüggemann N., Butterbach-Bahl K., Dick J., Dorsey J., Duyzer J., Gallagher M., Gasche R., Horvath L., Kitzler B., Leip A., Pihlatie M.K., Rozenkranz P., Seufert G., Vesala T., Westrate H., Zechmeister-Boltenster N. Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and NO2) // Biogeosci. 2006. V. 3, N 4. P. 651–661.
  31. Machefert S.E., Dise N.B., Goulding K.W.T., Whitehead P.G. Nitrous oxide emissions from two riparian ecosystems: Key controlling variables // Water, Air, Soil Pollut: Focus. 2004. V. 4, N 2–3. P. 427–436.
  32. Krasnov O.A., Maksyutov Sh., Davydov D.K., Fofonov A.V., Glagolev M.V., Inoue G. Monitoring emissii metana i dvuokisi ugleroda iz pochvy v atmosferu i parametry pochvy. Bakcharskoe boloto Tomskoj oblasti (2014 year) // Optika atmosf. i okeana. 2015. V. 28, N 7. P. 630–637.
  33. Glagolev M.V., Il'yasov D.V., Terent'eva I.E., Sabrekov A.F., Krasnov O.A., Maksyutov Sh.Sh. Emissiya metana i dioksida ugleroda v zabolochennyh lesah yuzhnoj i srednej tajgi Zapadnoj Sibiri // Optika atmosf. i okeana. 2017. V. 30, N 4. P. 301–309.
  34. Serikova S., Pokrovsky O.S., Ala-Aho P., Kazantsev V., Kirpotin S.N., Kopysov S.G., Krickov I.V., Laudon H., Manasypov R.M., Shirokova L.S., Soulsby C., Tetzlaff D., Karlsson J. High riverine CO2 emissions at the permafrost boundary of Western Siberia // Nature Geosci. 2018. V. 11, N 11. P. 825–829.
  35. Mustamo P., Maljanen M., Hyvärinen M., Ronkanen A.-K., Kløve B. Respiration and emissions of methane and nitrous oxide from a boreal peatland complex comprising different land-use types // Boreal Environ. Res. 2016. V. 21, N 5–6. P. 405–426.
  36. Glagolev M., Kleptsova I., Filippov I., Maksyutov S., Machida T. Regional methane emission from West Siberia mire landscapes // Environ. Res. Lett. 2011. V. 6, N 4. P. 045214.
  37. Sabrekov A.F., Runkle B.R.K., Glagolev M.V., Kleptsova I.E., Maksyutov S.S. Seasonal variability as a source of uncertainty in the West Siberian regional CH4 flux upscaling // Environ. Res. Lett. 2014. V. 9, N 4. P. 045008.
  38. Sabrekov A.F., Runkle B.R.K., Glagolev M.V., Terentieva I.E., Stepanenko V.M., Kotsyurbenko O.R., Maksyutov S.S., Pokrovsky O.S. Variability in methane emissions from West Siberia’s shallow boreal lakes on a regional scale and its environmental controls // Biogeosci. 2017. V. 14, N 15. P. 3715–3742.
  39. Arshinov M.Yu., Belan B.D., Davydov D.K., Maksutov Sh.Sh., Fofonov A.V. Comparison of flows of greenhouse gases at the atmosphere – soil interface for three areas of the Tomsk Region // Proc. SPIE. 2020. V. 11560. P. 115607M. DOI: 10.1117/12.2576745.
  40. Saikawa E., Prinn R.G., Dlugokencky E., Ishijima K., Dutton G.S., Hall B.D., Langenfelds R., Tohjima T., Machida T., Manizza M., Rigby M., O’Doherty S., Patra P.K., Harth C.M., Weiss R.F., Krummel P.B., van der Schoot M., Fraser P.J., Steele L.P., Aoki S., Nakazawa T., Elkins J.W. Global and regional emissions estimates for N2O // Atmos. Chem. Phys. 2014. V. 14, N 9. P. 4617–4641.
  41. Thompson R.L., Lassaletta L., Patra P.K., Wilson C., Wells K.C., Gressent A., Koffi E.N., Chipperfield M.P., Winiwarter W., Davidson E.A., Tian H., Canadell J.G. Acceleration of global N2O emissions seen from two decades of atmospheric inversion // Nat. Clim. Change. 2019. V. 9, N 12. P. 993–998.
  42. Maier R., Hörtnag L., Buchmann N. Greenhouse gas fluxes (CO2, N2O, and CH4) of pea and maize during two cropping seasons: Drivers, budgets, and emission factors for nitrous oxide // Sci. Total Environ. 2022. V. 849. P. 157541.
  43. Gong Y., Wu J., Vogt J., Le T.B., Yuan T. Combination of warming and vegetation composition change strengthens the environmental controls on N2O fluxes in a boreal peatland // Atmosphere. 2018. V. 9, N 12. P. 480.
  44. Tangen B.A., Bansa A. Prairie wetlands as sources or sinks of nitrous oxide: Effects of land use and hydrology // Agric. For. Meteorol. 2022. V. 320. P. 108968.
  45. Wangari E.G., Mwanake R.M., Kraus D., Werner C., Gettel G.M., Kiese R., Breuer L., Butterbach-Bahl K., Houska T. Number of chamber measurement locations for accurate quantification of landscape-scale greenhouse gas fluxes: Importance of land use, seasonality, and greenhouse gas type // J. Geophys. Res.: Biogeosci. 2022. V. 127, N 9. P. e2022JG006901.
  46. Arshinov M.Yu., Belan B.D., Davydov D.K., Krasnov O.A., Macsutov Sh.Sh., Machida T., Sasakawa Motoki, Fofonov A.V. Osobennosti vertikal'nogo raspredeleniya uglekislogo gaza nad yugom Zapadnoj Sibiri v letnij period // Optika atmosf. i okeana. 2018. V. 31, N 8. P. 670–681.