Vol. 36, issue 04, article # 3

Starikov V. I., Petrova T. M., Solodov A. M., Solodov A. A., Dеichuli V. M. Experimental and theoretical analysis of the broadening of H2O absorption lines by monatomic gases in a wide spectral range. // Optika Atmosfery i Okeana. 2023. V. 36. No. 04. P. 262–279. DOI: 10.15372/AOO20230403 [in Russian].
Copy the reference to clipboard
Abstract:

The results obtained at Institute of Atmospheric Optics SB RAS and abroad in studying the broadening and shifts of H2O absorption lines by monatomic gases He, Ar, Kr, and Xe are reviewed. The experimental studies at IAO SB RAS were carried out in the spectral range 3200–11200 cm-1 using a Bruker IFS 125 Fourier spectrometer. The broadening and shift coefficients were measured for the lines of 24 vibrational bands with maxim of vibrational quantum numbers v1 = 3, v2 = 6, and v3 = 3 and of rotational quantum numbers J = 14 and Ka = 8. The calculations were carried out by the semiclassical method using effective vibrationally dependent potentials. The experimental and calculated values of the broadening and shift coefficients are compared. Using the analytical model γ(sur), available experimental data on the broadening coefficients are analyzed, and their incompatibility is revealed in some cases. The model parameters γ(sur) are determined which allow generating the coefficients of broadening of H2O absorption lines by He, Ar, Kr, and Xe atoms in the range 350–14000 cm-1.
 

Keywords:

broadening and shift coefficients, water molecule, monatomic gas, intermolecular potential

References:

1. Dutta J.M., Jones C.R., Gotette T.M., De Lucia F.C. The hydrogen and helium pressure broadening of planetary temperature of the 183 and 380 GHz transitions of water vapor // Icarus. 1993. V. 102. P. 232–239.
2. Golubiatnikov G.Yu. Shifting and broadening parameters of the water vapor 183-GHz line (313–220) by H2O, O2, N2, CO2, H2, He, Ne, Ar, and Kr at room temperature // J. Mol. Spectrosc. 2005. V. 230. P. 196–198.
3. Steyert D.W., Wang W.F., Sirota J.M., Donahue N.M., Reuter D.C. Hydrogen and helium pressure broadening of water transitions in the 380–600 cm-1 region // J. Quant. Spectrosc. Radiat. Transfer. 2004. V. 83. P. 83–91.
4. Claveau C., Henry A., Hurtmans D., Valentin A. Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr, and nitrogen in the spectral range 1850–2140 cm-1 // J. Quant. Spectrosc. Radiat. Transfer. 2001. V. 68. P. 273–298.
5. Claveau C., Valentin A. Narrowing and broadening parameters for H2O lines perturbed by helium, argon, and xenon in the 1170–1440 cm-1 spectral range // Mol. Phys. 2009. V. 107. P. 1417–1722.
6. Petrova T.M., Solodov A.M., Starikov V.I., Solodov A.A. Vibrational dependence of an intrermolecular potential for H2O–He system // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 129. P. 241–253.
7. Solodov A.M., Starikov V.I. Helium-induced halfwidths and line shifts of water vapor transitions of the ν1 + ν2 and ν​​​​​​​2 + ν​​​​​​​3 bands // Mol. Phys. 2009. V. 107. P. 43–51.
8. Petrova T.M., Solodov A.M., Solodov A.A., Starikov V.I. Broadening parameters of the H2O–He collisional system for astrophysical applications // J. Mol. Spectrosc. 2016. V. 321. P. 50–58.
9. Solodov A.M., Starikov V.I. Broadening and shift of lines of the ν​​​​​​​2 + ν​​​​​​​3 band of water vapor induced by helium pressure // Opt. Spectrosc. 2008. V. 105. P. 14–20.
10. Zeninari V., Parvitte B., Courtois D., Lavrentieva N.N., Ponomarev Y.N., Durry G. Pressure broadening and shift coefficients of H2O due to perturbation by N2, O2, H2, and He in the 1.39 mm region: Experimental and calculations // Mol. Phys. 2004. V. 102. P. 1697–1706.
11. Petrova T.M., Solodov A.M., Starikov V.I., Solodov A.A. Measurements and calculations of He-broadening and -shifting parameters of the water vapor transitions of the ν​​​​​​​1 + ν​​​​​​​2 + ν​​​​​​​3 band // Mol. Phys. 2012. V. 110. P. 1493–1503.
12. Starikov V.I., Petrova T.M., Solodov A.M., Solodov A.A, Deichuli V.M. Study of the H2O dipole moment and polarisability vibrational dependence by the analysis of rovibrational line shifts // Spectrochim. Acta Part 1. 2019. V. 210. P. 275–280.
13. Petrova T.M., Solodov A.M., Solodov A.A., Deichuli V.M., Starikov V.I. Helium broadening parameters of water vapor in the 10.200–11.200 cm-1 spectral region // J. Mol. Spectrosc. 2017. V. 331. P. 60–65.
14. Lucchesini A., Gozzini S., Gabbanini C. Water vapor overtones pressure line broadening and shifting measurements // Eur. Phys. J. D 8. 2000. P. 223–226.
15. Poddar P., Mitra S., Hossain M.M., Biswas D., Ghosh P.N., Ray B. Diode laser spectroscopy of He, N2, and air broadened water vapour transitions belonging to the (2ν​​​​​​​1 + ν​​​​​​​2 + ν​​​​​​​3) overtone band // Mol. Phys. 2010. V. 108. P. 1957–1964.
16. Bauer A., Godon M., Kheddar M., Hartmann J.M. Temperature and perturber dependences of water vapor line-broadening. Experiments at 183 GHz; calculations below 1000 GHz // J. Quant. Spectrosc. Radiat. Transfer. 1989. V. 41. P. 49–54.
17. Liebe H.J., Dillon T.A. Foreign-gas-broadening parameters of the 22-GHz H2O line from refraction spectroscopy // J. Chem. Phys. 1969. V. 50. P. 727–732.
18. Petrova T.M., Solodov A.M., Solodov A.A., Deichuli V.M., Starikov V.I. Measurements and calculations of Ar-broadening parameters of water vapour transitions in a wide spectral region // Mol. Phys. 2017. V. 115. P. 1642–1656.
19. Paul J.Y., Schroeder J., Cich M.J., Giorgetta F.R., Swann W.C., Coddington I., Newbury N.R., Drouin B.J., Rieker G.B. Speed-dependent Voigt line shape parameter database from dual frequency comb measurements at temperatures up to 1305 K. Part II: Argon-broadened H2O absorption, 6801–7188 cm-1 // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 217. P. 189–212.
20. Petrova T.M., Solodov A.M., Solodov A.A., Starikov V.I. Measurements and calculations of Ar-broadening and -shifting parameters of the water vapor transitions of the ν​​​​​​​1 + ν​​​​​​​2 + ν​​​​​​​3 band // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 148. P. 116–126.
21. Grossmann B.E., Browell E.V. Water vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region // J. Mol. Spectrosc. 1989. V. 138. P. 562–595.
22. Petrova T.M., Solodov A.M., Solodov A.A., Deichuli V.M., Starikov V.I. Measurements and calculations of Kr- broadening and shifting parameters of water vapour transitions in wide spectral region // J. Mol. Spectrosc. 2020. V. 371. P. 111301.
23. Petrova T.M., Solodov A.M., Solodov A.A., Deichuli V.M., Starikov V.I. Measurements and calculations of krypton broadening and shifting parameters of the ν​​​​​​​1 + ν​​​​​​​2 + ν​​​​​​​3 band of H2O // J. Mol. Spectrosc. 2019. V. 365. P. 111209.
24. Lisak D., Rusciano G., Sasso A. An accurate comparison of line shape models on H2O lines in the spectral region around 3 mm // J. Mol. Spectrosc. 2004. V. 227. P. 162–171.
25. Petrova T.M., Solodov A.M., Solodov A.A., Deichuli V.M., Starikov V.I. Measurements and calculations of Xe-broadening and shifting parameters of water vapour transitions in a wide spectral region // J. Mol. Spectr. 2020. V. 371. P. 111301.
26. Petrova T.M., Solodov A.M., Solodov A.A., Deichuli V.M., Starikov V.I. Measurements and calculations of xenon broadening and shifting parameters of the ν​​​​​​​1 + ν​​​​​​​2 + ν​​​​​​​​​​​​​​3 band of H2O // J. Mol. Spectrosc. 2021. V. 382. P. 111546.
27. Grossmann B.E., Browell E.V. Line shape asymmetry of water vapor absorption lines in the 720-nm wavelength region// J. Quant. Spectrosc. Radiat. Transfer. 1991. V. 45. P. 339–348.
28. Ponomarev Yu.N., Solodov A.A., Solodov A.M., Petrova T.M., Naumenko O.V. FTIR spectrometer with 30 m optical cell and its applications to the sensitive measurements of selective and nonselective absorption spectra // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 177. P. 253–260.
29. Shcherbakov A.P. Primenenie metodov teorii raspoznavaniya obrazov dlya identifikatsii liniy v kolebatel'no-vrashchatel'nykh spektrakh // Optika atmosf. i okeana. 1997. V. 10, N 8. P. 947–958.
30. Ngo N.H., Lisak D., Tran H., Hartmann J.-M. An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes // J. Quant. Spectrosc. Rad. Transfer. 2013. V. 129. P. 89–100.
31. Tran H., Ngo N.H., Hartmann J.-M. Efficient computation of some speed-dependent isolated line profiles // J. Quant. Spectrosc. Rad. Transfer. 2013. V 129. P. 199–203.
32. Robert D., Bonamy J. Short range force effects in semiclassical molecular line broadening calculations // J. Phys. (Paris). 1979. V. 40. P. 923–943.
33. Starikov V.I., Lavrent'eva N.N. Stolknovitel'noe ushirenie spektral'nykh liniy pogloshcheniya molekul atmosfernykh gazov. Tomsk: Izd-vo SO RAN, 2006. 306 p.
34. Buldyreva J., Lavrent’eva N.N., Starikov V.I. Collisional Line Broadening and Shifting of Atmosphyric Gase. A practical Guide for Line Shape Modeling by Current Semi-classical Approaches. London: Imperial College Press, 2010.
35. Bykov A.D., Lavrentieva N.N., Sinitsa L.N. Influence of trajectory model on the line shift in the visible region // Atmos. Oceanic Opt. 1992. V. 5. P. 907–917.
36. Bykov A.D., Sinitsa L.N., Starikov V.I. Eksperimental'nye i teoreticheskie metody v spektroskopii vodyanogo para. Novosibirsk: Izd-vo SO RAN, 1999. 376 p.
37. Starikov V.I. Vibration-rotation interaction potential for H2O–A system // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 155. P. 49–56.
38. Labani B., Bonamy J., Robert D., Hartmann J.-M., Taine J. Collisional broadening of rotation-vibration lines for asymmetric top molecules. I. Theoretical model for both distant and close collisions // J. Chem. Phys. 1986. V. 84. P. 4256–4267.
39. Starikov V.I., Petrova T.M., Solodov A.M., Solodov A.A., Deichuli V.M. Effective potentials for H2O–He and H2O–Ar systems. Part 1. Isotropic induction-dispersion potentials // Eur. Phys. J.D. 2017. V. 71. P. 108(1–8).
40. Hoy A.R., Mills I.M., Strey G. Anharmonic force constant calculations // Mol. Phys. 1972. V. 35. P. 1265–90.
41. Radtsik A.A., Smirnov B.M. Spravochnik po atomnoy i molekulyarnoy fiziki. M.: Atomizdat, 1980. 240 p.
42. Hirschfelder J.O., Curtiss C.F., Bird R.B. Molecular Theory of Gases and Liquids. New York: Wiley, 1967.
43. Bouanich J.P. Site-site Lennard-Jones potential parameters for N2, O2, H2, CO, and CO2 // J. Quant. Spectrosc. Radiat. Transfer. 1992. V. 47. P. 243–250.
44. Mengel M., Jensen P. A theoretical study of the Stark effect in triatomic molecules: Application to H2O // J. Mol. Spectrosc. 1995. V. 169. P. 73–91.
45. Luo Y., Agren H., Vahtras O., Jorgensen P., Spirko V., Hettema H. Frequency-dependent polarizabilities and first hyperpolarizabilities of H2O // J. Chem. Phys. 1993. V. 98. P. 7159–7164.
46. Starikov V.I. Ushirenie spektral'nykh liniy vodyanogo para davleniem neona, kriptona i ksenona // Opt. i spektroskop. 2017. V. 123. P. 10–20.
47. Starikov V.I. Analytical representation of half-width for molecular ro-vibrational lines in the case of dipole-dipole and dipole-quadrupole interactions // Mol. Phys. 2009. V. 107. P. 2277–2236.
48. Petrova T.M., Solodov A.M., Solodov A.A., Deichuli V.M., Starikov V.I. Measurements and calculations of Air-broadening and shifting parameters of water vapour transitions in a wide spectral region // J. Mol. Phys. 2021. V. 119. P. e1906967.
49. Starikov V.I., Petrova T.M., Solodov A.M., Solodov A.A., Deichuli V.M. Analysis of the He-, Ar-, and Kr- broadening coefficients of water vapor transitions in a wide spectral region // Spectrochim. Acta, Part A: 2021. V. 245. P. 118883.