Vol. 38, issue 12, article # 11

Rubinshtein K. G., Kurbatova M. M., Konyaev P. A., Kiselev A. A. The impact of wind reproduction errors in atmospheric dynamics numerical models on air pollution dispersion forecasting. // Optika Atmosfery i Okeana. 2025. V. 38. No. 12. P. 1038–1043. DOI: 10.15372/AOO20251211 [in Russian].
Copy the reference to clipboard
Abstract:

The paper proposes a method for analyzing the quality of wind fields from hydrodynamic model forecasts for a specific transport model. This is done using the results of measurements in the Kincaid tracer experiment. The method involves adding normalized random fluctuations to the wind fields up to an altitude of 4 km and analyzing the maximum values of wind speed and direction to obtain accurate results for the transport of pollutants. The measurements are taken from a dense network of specialized stations.

Keywords:

transport model, criterion for input wind speed, tracer experiment

Figures:
References:

1. Leadbetter S.J., Andronopoulos S., Bedwell P., Chevalier-Jabet K., Geertsema G., Gering F., Hamburger T., Jones A.R., Klein H., Korsakissok I., Mathieu A., Pázmándi T., Périllat R., Rudas C., Sogachev A., Szántó P., Tomas J.M., Twenhöfel C., de Vries H., Wellings J. Ranking uncertainties in atmospheric dispersion modelling following the accidental release of radioactive material // Radioprotection. 2020. V. 55, N HS1. P. S51–S55. DOI: 10.1051/radiopro/2020012.
2. Emery C., Tai E., Yarwood G. Enhanced Meteorological Modeling and Performance Evaluation for Two Texas Ozone Episodes. Novato: Environ, 2001. V. 11. P. 28–46.
3. Tartakovsky D., Stern E., Broday D.M. Evaluation of modeled wind field for dispersion modeling // Atmos. Res. 2015. V. 166. P. 150–156. DOI: 10.1016/j.atmosres.2015.07.004.
4. Monk K., Guérette E.-A., Paton-Walsh C., Silver J.D., Emmerson K.M., Utembe S.R., Zhang Y., Griffiths A.D., Chang L.T.-C., Duc H.N., Trieu T., Scorgie Y., Cope M.E. Evaluation of Regional Air Quality Models over Sydney and Australia: Part 1 – Meteorological Model Comparison // Atmosphere. 2019. V. 10. DOI: 10.3390/atmos10070374.
5. Kemball-Cook S., Jia Y., Emery C., Morris R., Wang Z., Tonnesen G. Alaska MM5 Modeling for the 2002 Annual Period to Support Visibility Modeling: Draft report. Novato: Environ, 2005. URL: https://views.cira.colostate.edu/docs/iwdw/modeling/wrap/2002/met/alaska_mm5_draftreport_sept05.pdf.
6. Chang J.C., Hanna S. Technical Descriptions and User's Guide for the BOOT Statistical Model Evaluation Software Package, Version 2.0. 2005. 118 p.
7. Arutyunyan R.V., Belikov V.V., Belikova G.V., Sorokovikova O.S., Golovisnin V.M., Kiselev V.P., Semenov V.N., Starodubceva L.P., Fokin A.L. Nostradamus computer system for supporting decisions during accidental emissions at radiation hazardous objects // Izv. Ross. Akad. Nauk, Energetika. 1995. N. 4. P. 19–30.
8. Klemp J.B., Skamarock W.C., Dudhia J. Conservative split-explicit time integration methods for the compressible nonhydrostatic equations // Mon. Weather Rev. 2007. V. 135. P. 2897–2913. DOI: 10.1175/MWR3440.1.
9. Ivanov E.A., Klepikova N.V., Troyanova N.I., Freimundt G.N. Metody rascheta pod"ema fakela iz ventilyatsionnoi truby // Apparatura i novosti radiatsionnykh izmerenii (ANRI). 2014. N 4. P. 18–32.
10. Zhang X.L., Su G.F., Chen J.G., Raskob W., Yuan H.Y., Huang Q.Y. Iterative ensemble Kalman filter for atmospheric dispersion in nuclear accidents: An application to Kincaid tracer experiment // J. Hazard. Mat. 2015. V. 297. P. 329–339. DOI: 10.1016/j.jhazmat.2015.05.035.
11. MODIS moderate resolution iaging. URL: https://modis.gsfc.nasa.gov/ (last access: 12.10.2023).
12. Berlyand M.E. Sovremennye problemy atmosfernoi diffuzii i zagryazneniya atmosfery. L.: Gidrometeoizdat, 1975. 448 p.
13. Hoffman F.O., Hammonds J.S. An Introductory Guide to Uncertainty Analysis in Environmental and Health Risk Assessment. Senes Oak Ridge, Inc., 1994. 39 p.