Том 33, номер 07, статья № 1

Солодов А. А., Петрова Т. М., Пономарев Ю. Н., Солодов А. М., Шалыгин А. С. Вращательная зависимость полуширин линий фундаментальной полосы 0 0 0 11  0 0 0 01 углекислого газа, находящегося в нанопорах аэрогеля: новые измерения. // Оптика атмосферы и океана. 2020. Т. 33. № 07. С. 505–508. DOI: 10.15372/AOO20200701.
Скопировать ссылку в буфер обмена
Аннотация:

На Фурье-спектрометре Bruker IFS 125HR в диапазоне 2250–2400 см-1 при комнатной температуре зарегистрированы спектры поглощения углекислого газа, находящегося в аэрогеле с порами размером 60 нм. Определены параметры спектральных линий CO2, показана зависимость их полуширин от вращательных квантовых чисел. Проведено сравнение с данными, представленными в литературе.

Ключевые слова:

CO2, аэрогель, Фурье-спектроскопия

Список литературы:

1. Ponomarev Yu.N., Petrova T.M., Solodov A.M., Solodov A.A. IR spectroscopy of water vapor confined in nanoporous silica aerogel // Opt. Express. 2010. V. 18, N 25. P. 26062–26067.
2. Petrova T.M., Ponomarev Yu.N., Solodov A.A., Solodov A.M., Danilyuk A.F. Spectroscopic nanoporometry of aerogel // JETP Lett. 2015. V. 101. P. 65–67.
3. Solodov A.A., Petrova T.M., Ponomarev Yu.N., Solodov A.M. Influence of nanoconfinement on the rotational dependence of line half-widths for 2–0 band of carbon oxide // Chem. Phys. Lett. 2015. V. 637. P. 18–21.
4. Solodov A.A., Petrova T.M., Ponomarev Yu.N., Solodov A.M., Glazkova E.A. Rotational dependeces of line half-widths for CO and CO2 confined in SiO2/Al2O3 xerogel // Mol. Phys. 2017. V. 115, N 14. P. 1708–1712.
5. Solodov A.A., Petrova T.M., Ponomarev Yu.N., Solodov A.M., Danilyuk A.F. FTIR spectroscopy of 2–0 band of carbon monoxide confined in silica aerogels with different pore sizes // Mol. Phys. 2019. V. 117, N 1. P. 67–70.
6. Petrova T.M., Ponomarev Yu.N., Solodov A.A., Solodov A.M., Danilyuk A.F. Line broadening of carbon dioxide confined in nanoporous aerogel // Proc. SPIE. 2016. V. 10035. P. 100350M.
7. Hartmann J.-M., Sironneau V., Boulet C., Svensson T., Hodges J.T., Xu C.T. Collisional broadening and spectral shapes of absorption lines of free and nanopore-confined O2 gas // Phys. Rev. A. 2013. V. 87. P. 032510-1-10.
8. Hartmann J.-M., Sironneau V., Boulet C., Svensson T., Hodges J.T., Xu C.T. Infrared absorption by molecular gases as a probe of nanoporous silica xerogel and molecule-surface collisions: Low-pressure results // Phys. Rev. A 2013. V. 87. P. 032510.
9. Hartmann J.-M., Boulet C., Vander Auwera J., El Hamzaoui H., Capoen B., Bouazaoui M. Line broadening of confined CO gas: From molecule–wall to molecule–molecule collisions with pressure // J. Chem. Phys. 2014. V. 140. P. 064302.
10. Hartmann J.-M., Vander Auwera J., Boulet C., Birot M., Dourges M.-A., Toupance T., Hamzaoui H.El, Ausset P., Carre Y., Kocon L., Capoen B., Bouazaoui M. Infrared absorption by molecular gases to probe porous materials and comparisons with other techniques // Micropor. Mesopor. Mater. 2017. V. 237. P. 31–37.
11. Svensson T., Adolfsson E., Burresi M., Savo R., Can Xu, Wiersma D.S., Svanberg S. Pore size assessment based on wall collision broadening of spectral lines of confined gas: Experiments on strongly scattering nanoporous ceramics with fine-tuned pore sizes // Appl. Phys. B. 2013. V. 110, N 2. P. 147–154.
12. Svensson T., Lewander M., Svanberg S. Laser absorption spectroscopy of water vapor confined in nanoporous alumina: Wall collision line broadening and gas diffusion dynamics // Opt. Express. 2010. V. 18, N 16. P. 16460–16473.
13. Солодов А.А., Петрова Т.М., Пономарев Ю.Н., Солодов А.М., Шалыгин А.С. Вращательная зависимость полуширин линий фундаментальной полосы 0 0 0 11 –0 0 0 01 углекислого газа, находящегося в нанопорах аэрогеля // Оптика атмосф. и океана. 2019. Т. 32, № 7. С. 516–518; Solodov A.A., Petrova T.M., Ponomarev Yu.N., Solodov A.M., Shalygin A.S. Rotational dependence of line half-width for 0 0 0 11  0 0 0 01 fundamental band of CO2 confined in aerogel nanopores // Atmos. Ocean. Opt. 2019. V. 32, N 6. P. 619–621.
14. Gordon I.E., Rothman L.S., Hill C., Kochanov R.V., Tan Y., Bernath P.F., Birk M., Boudon V., Chance K.V., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Perevalov V.I., Perrin A., Shine K.P., Smith M.-A.H., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Barbe A., Császár A.G., Devi V.M., Furtenbacher T., Harrison J.J., Hartmann J.-M., Jolly A., Johnson T.J., Karman T., Kleiner I., Kyuberis A.A., Loos J., Lyulin O.M., Massie S.T., Mikhailenko S.N., Moazzen-Ahmadi N., Müller H.S.P., Naumenko O.V., Nikitin A.V., Polyansky O.L., Rey M., Rotger M., Sharpe S.W., Sung K., Starikova E., Tashkun S.A., Auwera J. Vander, Wagner G., Wilzewski J., Wcisło P., Yu S., Zak E.J. The HITRAN 2016 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 203. P. 3–69.
15. Rolison D.R., Dunn B. Electrically conductive oxide aerogels: New materials in electrochemistry // J. Mater. Chem. 2001. V. 11. P. 963–980.