Том 34, номер 12, статья № 1

Старикова Е. Н., Barbe A. Экспериментальные центры двенадцати полос изотополога озона 16О16О18О в диапазоне 3400–5600 см-1. Сравнение с теоретическими расчетами на основе функции потенциальной энергии молекулы. // Оптика атмосферы и океана. 2021. Т. 34. № 12. С. 927–933. DOI: 10.15372/AOO20211201.
Скопировать ссылку в буфер обмена
Аннотация:

Два спектра озона, обогащенного кислородом 18О, были зарегистрированы на Фурье-спектрометре Реймского университета в диапазоне 3400–5600 см-1. Определены экспериментальные центры двенадцати колебательно-вращательных полос 16O16O18O из анализа идентифицированных линий в спектрах. Проведено их сравнение с теоретическими расчетами на основе функции потенциальной энергии молекулы.

Ключевые слова:

озон, изотопические модификации, CS симметрия, Фурье-спектроскопия, потенциальная поверхность

Список литературы:

1. Gao Y.Q., Marcus R.A. Strange and unconventional isotope effects in ozone formation // Science. 2001. V. 293. P. 259–263.
2. Janssen Ch., Guenther J., Mauersberger K., Krankowsky D. Kinetic origin of the ozone isotope effect: A critical analysis of enrichments and rate coefficients // Phys. Chem. Chem. Phys. 2001. V. 3. P. 4718.
3. Miklavc A., Peyerimhoff S.D. Rates of formation of ozone isotopomers: A theoretical interpretation // Chem. Phys. Lett. 2002. V. 359. P. 55–62.
4. Schinke R., Grebenshchikov S.Yu., Ivanov M.V., Fleurat-Lessard P. Dynamical studies of the ozone isotope effect // Ann. Rev. Phys. Chem. 2006. V. 57. P. 625–661.
5. Marcus R.A. Theory of mass-independent fractionation of isotopes, phase space accessibility, and a role of isotopic symmetry // Proc. Natl. Acad. Sci. 2013. V. 110, N 44. P. 11703–11707.
6. Lopez-Puertas M., Funke B., Gil-Lopez S., Lopez-Valverde M.A., von Clarmann T., Fischer H., Oellhaf H., Stiller G., Kaufmann M., Koukouli M.E., Flaud J.-M. Atmospheric non-local thermodynamic equilibrium emissions as observed by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) // C. R. Acad. Sci. Paris. 2005. V. 6. P. 848–863.
7. Barbe A., Mikhailenko S., Starikova E., De Backer-Barilly M.-R., Tyuterev Vl.G., Mondelain D., Kassi S., Campargue A., Janssen C., Tashkun S., Kochanov R., Gamache R., Orphal J. Ozone spectroscopy in the electronic ground state: High resolution spectra analyses and update of line parameters since 2003 // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 172–190.
8. Barbe A., Starikova E., De Backer M.-R., Tyuterev Vl.G. Analyses of infrared spectra of asymmetric ozone isopotologue 16O16O18O in the range 950–3850 cm-1 // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 218. P. 231–247.
9. Starikova E., Barbe A., De Backer M.-R., Tyuterev V. Analysis of thirteen absorption bands of 16O18O18O ozone isotopomer in the 950–3500 cm-1 infrared spectral range // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 257. P. 107364.
10. Barbe A., Mikhailenko S., Starikova E., Tyuterev Vl. Infrared spectra of 16O3 in the 900–5600 cm-1 range revisited: Empirical corrections to the S&MPO and HITRAN2020 line lists // J. Quant. Spectrosc. Radiat. Transfer. 2021. DOI: 10.1016/j.jqsrt.2021. 107936.
11. Mondelain D., Campargue A., Kassi S., Barbe A., Starikova E., De Backer M.-R., Tyuterev Vl.G. The CW-CRDS spectra of the 16O/18O isotopologues of ozone between 5930 and 6340 cm-1. Part 1: 16O16O18O // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 116. P. 49–66.
12. Vasilchenko S., Barbe A., Starikova E., Kassi S., Modelain D., Campargue A., Tyuterev V. Detection and assignment of ozone bands near 95% of the dissociation threshold: Ultra-sensitive experiments for probing potential energy function and vibrational dynamics // Phys. Rev. A. 2020. V. 102, N 5. P. 052804.
13. Васильченко С., Kassi S., Mondelain D., Campargue A. Лазерная спектроскопия высокого разрешения молекулы озона вблизи порога диссоциации // Оптика атмосф. и океана. 2021. V. 34, № 5. P. 315–322.
14. Babikov Y., Mikhailenko S., Barbe A., Tyuterev Vl.G. S&MPO – an information system for ozone spectroscopy on the WEB // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 145. P. 169–196.
15. Gordon I.E., Rothman L.S., Hargreaves R.J., Hashemi R., Karlovets E.V., Skinner F.M., Conway E.K., Hill C., Kochanov R.V., Tan Y., Wcisło P., Finen­ko A.A., Nelson K., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Coustenis A., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Mlawer E.J., Nikitin A.V., Perevalov V.I., Rotger M., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Adkins E.M., Baker A., Barbe A., Cane E., Császár A.G., Dudaryonok A., Egorov O., Fleisher A.J., Fleurbaey H., Foltynowicz A., Furtenbacher T., Harrison J.J., Hartmann J.-M., Horneman V.-M., Huang X., Karman T., Karns J., Kassi S., Kleiner I., Kofman V., Kwabia-Tchana F., Lavrentieva N.N., Lee T.J., Long D.A., Lukashevskaya A.A., Lyulin O.M., Makhnev V.Yu., Matt W., Massie S.T., Melosso M., Mikhailenko S.N., Mondelain D., Müller H.S.P., Naumenko O.V., Perrin A., Polyansky O.L., Raddaoui E., Raston P.L., Reed Z.D., Rey M., Richard C., Tóbiás R., Sadiek I., Schwenke D.W., Starikova E., Sung K., Tamassia F., Tashkun S.A., Vander Auwera J., Vasilenko I.A., Vigasin A.A., Villanueva G.L., Vispoel B., Wagner G., Yachmenev A., Yurchenko S.N. The HITRAN2020 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2021. DOI: 10.1016/j.jqsrt.2021.107949.
16. Delahaye T., Armante R., Scott N.A., Jacquinet-Husson N., Chédin A., Crépeau L., Crevoisier C., Douet V., Perrin A., Barbe A., Boudon V., Campargue A., Coudert L.H., Ebert V., Flaud J.-M., Gamache R.R., Jacquemart D., Jolly A., Kwabia Tchana F., Kyuberis A., Li G., Lyulin O.M., Manceron L., Mikhailenko S., Moazzen-Ahmadi N., Müller H.S.P., Naumenko O.V., Nikitin A., Perevalov V.I., Richard C., Starikova E., Tashkun S.A., Tyuterev Vl.G., Vander Auwera J., Vispoel B., Yachmenev A., Yurchenko S. The 2020 edition of the GEISA spectroscopic database // J. Mol. Spectrosc. 2021. V. 380. P. 111510.
17. Albert D., Antony B.K., Yaye Awa Ba, Babikov Yu.L., Bollard Ph., Boudon V., Delahaye F., Del Zanna G., Dimitrijevíc M.S., Drouin B.J., Dubernet M.-L., Duensing F., Emoto M., Endres C.P., Fazliev A.Z., Glorian J.-M., Gordon I.E., Gratier P., Hill C., Jevremovíc D., Joblin C., Kwon D.-H., Kochanov R.V., Krishnakumar E., Leto G., Loboda P.A., Lukashevskaya A.A., Lyulin O.M., Marinkovíc B.P., Markwick A., Marquart T., Mason N.J., Mendoza C., Millar T.J., Moreau N., Morozov S.V., Möller T., Müller H.S.P., Mulas G., Murakami I., Pakhomov Yu., Palmeri P., Penguen J., Perevalov V.I., Piskunov N., Postler J., Privezentsev A.I., Quinet P., Ralchenko Yu., Rhee Y.-J., Richard C., Rixon G., Rothman L.S., Roueff E., Ryabchikova T., Sahal-Bréchot S., Scheier P., Schilke P., Schlemmer S., Smith K.W., Schmitt B., Skobelev I.Yu., Sreckovíc V.A., Stempels E., Tashkun S.A., Tennyson J., Tyuterev V.G., Vastel Ch., Vujčíc V., Wakelam V., Walton N.A., Zeippen C., Zwölf C.M. A decade with VAMDC: Results and ambitions // Atoms. 2020. V. 8, N 4. P. 76.
18. Flaud J.-M., Camy-Peyret C., N’Gom A., Devi V.M., Pinsland C.P., Smith M.A. The n2 bands of 16O18O16O and 16O16O18O: Line positions and intensities // J. Mol. Spectrosc. 1989. V. 133. P. 217–223.
19. Camy-Peyret C., Flaud J.-M., Perrin A., Devi V.M., Rinsland C.P., Smith M.A.H. The hybrid-type bands n1 and n3 of 16O16O18O: Line positions and intensities // J. Mol. Spectrosc. 1986. V. 118. P. 345–354.
20. Flaud J.-M., Bourgeois M.-T., Barbe A., Plateaux J., Camy-Peyret C. The n1 + n3 bands of 16O18O16O and 16O16O18O // J. Mol. Spectrosc. 1994. V. 165. P. 464–469.
21. De Backer-Barilly M.-R., Barbe A., Tashkun S.A., Tyuterev Vl.G., Chichery A. The 5n3 bands of 18O enriched ozone: Line positions of 16O16O18O, 16O18O16O, 16O18O18O, and 18O16O18O // Mol. Phys. 2002. V. 100. P. 3499–3506.
22. Chichery A., Barbe A., Tyuterev Vl.G., Tashkun S.A. High resolution IR spectra of 18O-enriched ozone: Band centres of 16O16O18O, 16O18O18O, 18O16O18O, and 16O18O16O // J. Mol. Spectrosc. 2001. V. 2005. P. 347–349.
23. Barbe A., De Backer-Barilly M.-R., Tyuterev Vl.G., Tashkun S.A. Observations of infrared bands of asymmetrical ozone isotopologues 16O16O18O and 16O18O18O // Appl. Opt. 2003. V. 42. P. 5136–5139.
24. Plateaux J.-J., Barbe A., Delahaigue A. Reims high resolution Fourier transform spectrometer data reduction for ozone // Spectrochim. Acta. Part A 1995. V. 51. V. 1153–1169.
25. Plateaux J.-J., Régalia L., Boussin C., Barbe A. Multispectrum fitting technique for data recorded by Fourier transform spectrometer: Application to N2O and CH3D // J. Quant. Spectrosc. Radiat. Transfer. 2001. V. 68. P. 507–520.
26. Flaud J.-M., Bacis R. The ozone molecule: infrared and microwave spectroscopy. Spectrochim Acta. Part A. 1998. V. 54. P. 3–16.
27. Watson J.K.G. Determination of centrifugal distortion coefficients of asymmetric-top molecules // J. Chem. Phys. 1967. V. 46. P. 4189–4196.
28. Kokoouline V., Lapierre D., Alijah A., Tyuterev V. Localized and delocalized bound states of the main isotopologue 48O3 and of 18O-enriched 50O3 isotopomers of the ozone molecule near the dissociation threshold // Phys. Chem. Chem. Phys. 2020. V. 22, N 28. P. 15885–15899.
29. Tyuterev Vl.G., Kochanov R.V., Tashkun S.A., Holka F., Szalay P.G. New analytical model for the ozone electronic ground state potential surface and accurate ab initio vibrational predictions at high energy range // J. Chem. Phys. 2013. V. 139. P. 134307.
30. Tyuterev Vl.G., Kochanov R.V., Tashkun S.A. Analytical representation for the ozone electronic ground state potential function in the spectroscopically accessible range and extended vibration predictions // Proc. XVII Intern. HighRus Conf., St. Petersburg, July 2012. 25 p.
31. Chichery A. Analyse des spectres infrarouges haute résolution des formes isotopiques de l'ozone. Application aux études atmosphériques: PhD thesis. Université de Reims, 2000.
32. Tyuterev Vl.G., Tashkun S.A, Seghir H. High-order contact transformations: General algorithm, computer implementation and triatomic tests // Proc. SPIE. 2004. V. 5311. P. 164–75.
33. Flaud J.-M., Camy-Peyret C., Rinsland C.P., Smith M.A.H., Devi M. Atlas of ozone spectral parameters from microwave to medium infrared. Boston: Academic press, 1990. 600 p.
34. Perrin A., Flaud J.-M., Camy-Peyret C. Calculated energy levels and intensities for the n1 and 2n2 bands of HDO // J. Mol. Spectrosc. 1985. V. 112. P. 153–162.
35. Tyuterev Vl.G., Kochanov R.V., Tashkun S.A. Accurate ab initio dipole moment surfaces of ozone: First principle intensity predictions for rotationally resolved spectra in a large range of overtone and combination bands // J. Chem. Phys. 2017. V. 146, N 6. P. 064304.
36. Tyuterev V., Barbe A., Mikhailenko S., Starikova E., Babikov Yu. Towards the intensity consistency of the ozone bands in the infrared range: Ab initio corrections to the S&MPO database // J. Quant. Spectrosc. Radiat. Transfer. 2021. V. 272. P. 107801.
37. Yuen C.H., Lapierre D., Gatti F., Kokoouline V., Tyuterev Vl.G. The role of ozone vibrational resonances in the isotope exchange reaction 16O16O + 18O ® 18O16O + 16O: The time-dependent picture // J. Phys. Chem. A. 2019. V. 123, N 36. P. 7733–7743.
38. Starikov V.I., Tashkun S.A., Tyuterev V.G. Description of vibration-rotation energies of nonrigid triatomic molecules using the generating function method. Bending states and second triad of water // J. Mol. Spectrosc. 1992. V. 151, N 1. P. 130–147.
39. Mellau G., Mikhailenko S.N., Starikova E.N., Tashkun S.A., Over H., Tyuterev Vl.G. Rotational levels of the (000) and (010) states of D216O from hot emission spectra in the 320–860 cm–1 region // J. Mol. Spectrosc. 2004. V. 224, N 1. P. 32–60.
40. Mikhailenko S.N., Tyuterev Vl.G., Starikov V.I., Albert K.K., Winnewisser B.P., Winnewisser M., Mellau G., Camy-Peyret C., Lanquetin R., Flaud J.-M., Brault J.W. Water spectra in the region 4200–6250 cm–1, extended analysis of n1 + n2, n2 + n3, and 3n2 bands and confirmation of highly excited states from flame spectra and from atmospheric long-path observations // J. Mol. Spectrosc. 2002. V. 213, N 2. P. 91–121.
41. Egorov O.V., Mauguiere F., Tyuterev V.G. Periodic orbits and bifurcations of the vibrational modes of the ozone molecule at high energies // Russ. Phys. J. 2020. V. 62, N 10. P. 1917–1925.
42. Holka F., Szalay P.G., Fremont J., Rey M., Peterson K.A., Tyuterev V.G. Accurate ab initio determination of the adiabatic potential energy function and the Born–Oppenheimer breakdown corrections for the electronic electronic ground state of LiH isotopologues // J. Chem. Phys. 2011. V. 134, N 9. P. 94306.
43. Tajti A., Szalay P.G., Kochanov R., Tyuterev V.G. Diagonal Born–Oppenheimer corrections to the ground electronic state potential energy surfaces of ozone: Improvement of ab initio vibrational band centers for the 16O3, 17O3 and 18O3 isotopologues // Phys. Chem. Chem. Phys. 2020. V. 22, N 42. P. 24257–24269.