Vol. 32, issue 05, article # 2

Sulakshina O. N., Borkov Yu. G. Critical evaluation of measured transition frequencies of the 16OH molecule in the X2П state using the Ritz principle. // Optika Atmosfery i Okeana. 2019. V. 32. No. 05. P. 346–357. DOI: 10.15372/AOO20190502 [in Russian].
Copy the reference to clipboard

Critical evaluation of the available experimental data on the frequencies of the rotational and vibrational-rotational transitions of the OH molecule in the ground electronic state Х2P is performed using the Ritz combination principle. The transition frequencies weighted in accordance with the experimental errors have been processed by the RITZ program code. The analysis of the dimensionless weighted deviations made it possible to exclude "bad frequencies" from consideration and to carry out processing with a standard deviation of 1.8. As a result of critical evaluation, a set of 1056 empirical RITZ energy levels is obtained with an appropriate uncertainty for each level. The empirical Ritz energy levels are compared with the calculated levels given in the HITRAN spectroscopic database.


measured transition frequencies, OH molecule, ground electronic state, Ritz principle


  1. Belan B.D. Ozon v troposfere. Tomsk: IOA SO RAN, 2010. 488 p.
  2. Ortega J., Helming D., Guenter A., Harley P., Pressley S., Vogel Ch. Flux estimates and OH reaction potential of reactive biogenic volatile organic compounds (BVOCS) from mixed northern hardwood forest // Atmos. Environ. 2007. V. 41, N 26. P. 5479–5495.
  3. Wilson W.J., Schwartz P.R., Neugebauer G., Harvey P.M., Becklin E.E. Infrared stars with strong 1665/1667-MHz OH microwave emission // Astrophys. J. 1972. V. 177. P. 523–540.
  4. Heiles C.E. Normal OH emission and interstellar dust clouds // Astrophys. J. 1968. V. 151. P. 919–934.
  5. Piccioni G., Drossart P., Zasova L., Migliorini A., Gérard J.C., Mills F.P. Virtis-Venus Express Technical Team Collaboration, et al. First detection of hydroxyl in the atmosphere of Venus // Astron. Astrophys. 2008. V. 483. P. L29–L33.
  6. Atreya S.K., Gu Z.G. Stability of the Martian atmosphere: Is hetero-geneous catalysis essential // J. Geophys. Res. 1994. V. 99, N E6. P. 13133–13145.
  7. Maillard J.P., Chauville J., Mantz A.W. High-resolution emission spectrum of OH in an oxyacetylene flame from 3.7 to 0.9 mm // J. Mol. Spectrosc. 1976. V. 63. P. 120-141.
  8. Ewart P., O'Leary S.V. Detection of OH in a flame by degenerate four-wavemixing // Opt. Lett. 1986. V. 11, N 5. P. 279–281.
  9. Abrams M.C., Davis S.P., Rao M.L.P., Engleman Jr.R., Brault J.W. High-resolution Fourier transform spectroscopy of the Meinel system of OH // Astrophys. J. Suppl. Ser. 1994. V. 93. P. 351–395.
  10. Meinel A.B. OH emission bands in the spectrum of the night sky // Astrophys. J. I. 1950. V. 111. P. 555–564; II. V. 112. P. 120–130.
  11. Cosby P.C., Slanger T.G. OH spectroscopy and chemistry investigated with astronomical sky spectra // Can. J. Phys. 2007. V. 85, N 2. P. 77–99.
  12. Flaud J.-M., Camy-Peyret C., Maillard J.P. Higher ro-vibrational levels of H2O deduced from high resolution oxygen-hydrogen flame spectra between 2800–6200 cm-1 // Mol. Phys. 1976. V. 32. P. 499–521.
  13. Tashkun S.A., Perevalov V.I., Teffo J.-L., Bykov A.D., Lavrentieva N.N. CDSD-1000, the high-temperature carbon dioxide spectroscopic databank // J. Quant. Spectrosc. Radiat. Transfer. 2003. V. 82. P. 165–196.
  14. Mikhailenko S.N., Tashkun S.A., Putilova T.A., Starikova E.N., Daumont L., Jenouvrier A., Fally S., Carleer M., Hermans C., Vandaele A.C. Critical evaluation of measured rotation-vibration transitions and an experimental dataset of energy levels of HD18O //J. Quant. Spectrosc. Radiat. Transfer. 2009. V. 110. P. 597–608.
  15. Tashkun S.A., Velichko T.I., Mikhailenko S.N. Critical evaluation of measured pure-rotational and rotation-vibration line positions and experimental dataset of energy levels of 12C16O in X1Σ state // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111. P. 1106–1116.
  16. Sulakshina O.N., Borkov Yu.G. Critical evaluation of measured line positions of 14N16O in X2П state // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 209. P. 171–179.
  17. Abrams M.C., Davis S.P., Rao M.L.P., Engleman R.Jr. Highly excited rotational states of Meinel system of OH // Astrophys. J. 1990. V. 363. P. 326–330.
  18. Sappey A.D., Copeland R.A. Laser double-resonance study of OH (X2Pi, v = 12) // J. Mol. Spectrosc. 1990. V. 143. P. 160–168.
  19. Hardwick J.L., Whipple G.C. Far infrared emission spectrum of the OH radical // J. Mol. Spectrosc. 1991. V. 147. P. 267–273.
  20. Farmer C.B., Delbouille L., Roland G., Servais Ch. The solar spectrum between 16 and 40 microns. Technical report. 1994. Unpublished.
  21. Melen F., Sauval A.J., Grevesse N., Farmer C.B., Servais Ch., Delbouille L., Roland G. A new analysis of the OH radical spectrum from solar infrared observations // J. Mol. Spectrosc. 1995. V. 174. P. 490–509.
  22. Nizkorodov S.A., Harper W.W., Nesbitt D.J. Fast vibrational relaxation of OH (v = 9) by ammonia and ozone // Chem. Phys. Lett. 2001. V. 341. P. 107–114.
  23. Martin-Drumel M.A., Pirali O., Balcon D., Brchignac P., Roy P., Vervloet M. High resolution far-infrared Fourier transform spectroscopy of radicals at the AILES beamline of SOLEIL synchrotron facility // Rev. Sci. Instrum. 2011. V. 82, N 11. P. 113106.
  24. Bernath P.F., Colin R. Revised molecular constants and term values for the X2P and B2Σ+ states of OH // J. Mol. Spectrosc. 2009. V. 257. P. 20–23.
  25. Furtenbacher T., Császár A.G., Tennyson J. MARVEL: Measured active rotational-vibrational energy levels // J. Mol. Spectrosc. 2007. V. 245. P. 115–125.
  26. Sulakshina O.N., Borkov Yu.G. Critical evaluation of measured rotation-vibration line positions of 16OH in the X2П state using Ritz method // Proc. SPIE. 2018. V. 10833. P. 108330D.
  27. Brooke J.S.A., Bernath P.F., Western C.M., Sneden C., Afsar M. Li G., Gordon I.E. Line strengths of rovibrational and rotational transitions in the X2П ground state of OH // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 168. P. 142–157.
  28. Gordon I.E., Rothman L.S., Hill С., Kochanov R.V., Tan Y., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Perevalov V.I., Perrin A., Shine K.P., Smith M.-A.H., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Barbe A., Császár A.G., Devi V.M., Furtenbacher T., Harrison J.J., Hartmann J.-M., Jolly A., Johnson T.J., Karman T., Kleineri I., Kyuberis A.A., Loos J., Lyulin O.M., Massie S.T., Mikhailenko S.N., Moazzen-Ahmadi N., Müller H.S.P., Naumenko O.V., Nikitin A.V., Polyansky O.L., Rey M., Rotger M., Sharpe S.W., Sung K., Starikova E., Tashkun S.A., Vander Auwera J., Wagner G., Wilzewski J., Wcisło P., Yu S., Zak E.J. The HITRAN2016 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 203. P. 3–69.