Vol. 34, issue 03, article # 2

Rodimova O. B. Absorption coefficient and intermolecular vibrations in the СО–Ar system. // Optika Atmosfery i Okeana. 2021. V. 34. No. 03. P. 164–168. DOI: 10.15372/AOO20210302 [in Russian].
Copy the reference to clipboard

Absorption in the 1–0 band of CO broadened by Ar is examined using the asymptotic line wing theory. An expression for the line shape is derived within the asymptotic line-wing theory (ALWT) when the center of mass motion is considered as classical whereas the other variables remain quantum. The line shape parameters are fitted to reach agreement between calculated and experimental data on the absorption in the CO band wing. The classical potential parameters are found from the temperature dependence of the second virial coefficient. A qualitative agreement is found between the quantum potential parameters and intermolecular potential surfaces from quantum-chemical calculations.


fundamental CO band wing, the He broadening, spectral line wings, second virial coefficient, potential energy surface


1. Nesmelova L.I., Rodimova O.B., Tvorogov S.D. Kontur spektral'noj linii i mezhmolekulyarnoe vzaimodejstvie. Novosibirsk: Nauka, 1986. 216 p.
2. Tvorogov S.D., Rodimova O.B. Stolknovitel'nyj kontur spektral'nyh linij. Tomsk: Izd-vo IOA SO RAN, 2013. 195 p.
3. Gordov E.P., Tvorogov S.D. Metod poluklassicheskogo predstavleniya kvantovoj teorii. Novosibirsk: Nauka, 1984. 167 p.
4. De Piante A., Campbell E.J., Buelow S.J. Pulsed molecular-beam, diode-laser spectrometry using rapid scanning techniques // Rev. Sci. Instrum. 1989. V. 60, N 5. P. 858862.
5. Ogata T., Jäger W., Ozier I., Gerry M.C.L. The microwave rotational spectrum of the ArCO dimer // J. Chem. Phys. 1993. V. 98, iss. 12. P. 93999404.
6. Hepp M., Jäger W., Pak I., Winnewisser G. Absorption measurements of ArCO b-type rotational transitions with a supersonic jet millimeter-wave spectrometer // J. Mol. Spectr. 1996. V. 176. P. 5863.
7. Hepp M., Gendriesch R., Pak I., Kuritsyn Y.A., Lewen F., Winnewisser G., Brookes M., McKellar A.R.W., Watson J.K.G., Amano T. Millimetre-wave spectrum of the ArCO complex: the K = 2 ¬ 1 and 3 ¬ 2 subbands // Mol. Phys. 1997. V. 92, N 2. P. 229236.
8. Gianturco F.A., Paesani F., Laranjieira M.F., Vasilenko V., Cunha M.A. Intermolecular forces from density functional theory. III. A multiproperty analysis for the Ar(1S)CO(1S) interaction // J. Chem. Phys. 1999. V. 110, iss. 16. P. 78327845.
9. Melnik D.G., Gopalakrishnan S., Miller T.A., Lucia F.C.D., Belov S. Submillimeter wave vibration-rotation spectroscopy of ArCO and ArND3 // J. Chem. Phys. 2001. V. 114, iss. 14. P. 61006106.
10. Havenith M., Hilpert G., Petri M., Urban W. Measurement of the first excited bending state of ArCO using a new concentration modulation technique in the jet // Mol. Phys. 1994. V. 81, N 4. P. 10031010.
11. Mirsky K. Carbon monoxide molecules in an argon matrix: Empirical evaluation of the Ar…Ar, C...Ar and O...Ar potential parameters // Chem. Phys. 1980. V. 46. P. 445455.
12. Tennyson J., Miller S., Sutcliffe B.T. Beyond ro-vibrational separation // J. Chem. Soc. Faraday Trans. II. 1988. V. 84, N 9. P. 12951303.
13. Kukawska-Tarnawska B., ChaIasinski G., Olszewski K. Structure and energetics of van der Waals complexes of carbon monoxide with rare gases. HeCO and ArCO // J. Chem. Phys. 1994. V. 101, iss. 6. P. 49644974.
14. Jansen G. Coupled-pair functional calculations on the ArCO and Ar2 van der Waals complexes // Chem. Phys. Lett. 1994. V. 223. P. 377382.
15. Shin S., Shin S.K., Tao F.-M. Ab initio potential energy surface and rovibrational energies of ArCO // J. Chem. Phys. 1996. V. 104, iss. 1. P. 183190.
16. Gianturco F.A., Paesani F. The rovibrational structure of the ArCO complex from a model interaction potential // J. Chem. Phys. 2001. V. 115, iss. 1. P. 249256.
17. Pedersen T.B., Cacheiro J.L., Fernandez B., Koch H. Rovibrational structure of the ArCO complex based on a novel three-dimensional ab initio potential // J. Chem. Phys. 2002. V. 117, iss. 14. Р. 65626572.
18. Sumiyoshi Y., Endo Y. Three-dimensional potential energy surface of ArCO // J. Chem. Phys. 2015. V. 142, iss. 2. P. 024314-111.
19. Dokuchaev A.B., Tonkov M.V. O nelorenttsovskom haraktere pogloshcheniya vnutri kolebatel'no-vrashchatel'noj polosy 1–0 okisi ugleroda // Opt. i spektrol. 1984. V. 56, iss. 2. P. 247254.
20. Bulanin M.O., Dokuchaev A.B., Tonkov M.V., Filippov N.N. Influence of line interference on the vibration-rotation band shapes // J. Quant. Spectrosc. Radiat. Transf. 1984. V. 31, N 5. P. 521543.
21. Baranov Yu.I., Tonkov M.V. Forma kryl'ev IK-polos okisi i dvuokisi ugleroda // Opt. i spektrol. 1984. V. 57, iss. 2. P. 242247.
22. Tonkov M.V., Filippov N.N. Dinamika momenta sil pri binarnyh stolknoveniyah i forma kryl'ev IK-polos CO i СО2 // Himicheskaya fizika. 1991. V. 10, N 7. P. 922929.
23. Nesmelova L.I., Rodimova O.B., Tvorogov S.D. Koeffitsient pogloshcheniya v mikrooknah i kryl'yah osnovnoj polosy CO // Izv. vuzov. Fiz. 1985. N 211-85. 38 p.
24. Nesmelova L.I., Rodimova O.B., Tvorogov S.D. Kontur spektral'nyh linij v fundamental'noj polose CO // Optika atmosfery. 1988. V. 1, N 4. P. 3644.
25. Rodimova O.B. Koeffitsient pogloshcheniya v kryle 1–0 polosy CO pri ushirenii geliem // Optika atmosf. i okeana. 2020. V. 33, N 9. P. 663667.
26. Brewer J. AFOSR Report 67-2795 (Dec 1967). Available from the Clearinghouse for Federal Scientific and Technical Information, Doc. AD 663448.
27. Dymond J.H., Smith E.B. The Virial Coefficients of Pure Gases and Mixtures. Oxford: Clarendon, 1980. 518 p.
28. Tvorogov S.D., Rodimova O.B. Asimptoticheskij i kvazistaticheskij podhody v teorii kontura spektral'noj linii // Optika atmosf. i okeana. 2012. V. 25, N 1. P. 3145.