Экспериментально исследована применимость существующего теоретического подхода к решению обратной задачи восстановления параметров оптической турбулентности из лидарных данных. Показано, что результаты расчетов по теоретической формуле, связывающей эхосигнал с интенсивностью турбулентных пульсаций показателя преломления воздуха, для случая статистически однородной среды с точностью до численного коэффициента удовлетворительно согласуются с данными зондирования. Для конкретного размера апертуры лидара рекомендована процедура определения коэффициента в формуле Воробьева. Предложено построение номограммы для определения структурной характеристики Cn2 для однородной турбулентности из показаний лидара. Установлено расхождение результатов эксперимента с теорией при зондировании неоднородной турбулентности. Показано, что основной вклад в формирование турбулентной компоненты эхосигнала за счет эффекта увеличения обратного рассеяния вносит участок трассы зондирования перед рассеивающим объемом. Предложено для определения структурной характеристики оптической турбулентности Cn2 пользоваться приближенной формулой, в которой нормированная характеристика Cn2 прямо пропорциональна эхосигналу и обратно пропорциональна интегралу, определяющему дисперсию флуктуаций интенсивности излучения.
атмосферная турбулентность, эффект увеличения обратного рассеяния, турбулентный лидар
1. Виноградов А.Г., Гурвич А.С., Кашкаров С.С., Кравцов Ю.А., Татарский В.И. Закономерность увеличения обратного рассеяния волн. Свидетельство на открытие № 359. Приоритет открытия: 25 августа 1972 г. в части теоретического обоснования и 12 августа 1976 г. в части экспериментального доказательства закономерности. Государственный реестр открытий СССР // Бюлл. изобретений. 1989. № 21.
2. Виноградов А.Г., Кравцов Ю.А., Татарский В.И. Эффект усиления обратного рассеяния на телах, помещенных в среду со случайными неоднородностями // Изв. вузов. Радиофиз. 1973. Т. 16, № 7. С. 1064–1070.
3. Кравцов Ю.А., Саичев А.И. Эффекты двукратного прохождения волн в случайно неоднородных средах // Успехи физ. наук. 1982. Т. 137, вып. 3. С. 501–527.
4. Разенков И.А. Перспективы применения турбулентного УОР-лидара для исследования пограничного слоя атмосферы // Оптика атмосф. и океана. 2021. Т. 34, № 1. С. 26–35; Razenkov I.A. Capabilities of a turbulent BSE-lidar for the study of the atmospheric boundary layer // Atmos. Ocean. Opt. 2021. V. 34, N 3. P. 229–238.
5. Гурвич А.С. Лидарное зондирование турбулентности на основе усиления обратного рассеяния // Изв. РАН. Физ. атмосф. и океана. 2012. Т. 48, № 6. С. 655–665.
6. Гурвич А.С. Лидарное позиционирование областей повышенной турбулентности ясного неба // Изв. РАН. Физ. атмосф. и океана. 2014. Т. 50, № 2. С. 166–174.
7. Афанасьев В.Л., Гурвич А.С., Ростов А.П. Экспериментальное исследование эффекта усиления обратного рассеяния в турбулентной атмосфере // Тез. XVIII Междунар. симпоз. «Оптика атмосферы и океана, Физика атмосферы». Иркутск, 2012. Томск: ИОА СО РАН, 2012. С. 95–99.
8. Разенков И.А. Турбулентный лидар. I. Конструкция // Оптика атмосф. и океана. 2018. Т. 31, № 1. С. 41–48; Rаzenkov I.А. Turbulent lidar: I – Desing // Atmos. Ocean. Opt. 2018. V. 31, N 3. P. 273–280.
9. Разенков И.А. Турбулентный лидар. II. Эксперимент // Оптика атмосф. и океана. 2018. Т. 31, № 2. С. 81–89; Rаzenkov I.А. Turbulent lidar: II – Experiment // Atmos. Ocean. Opt. 2018. V. 31, N 3. P. 281–289.
10. Банах В.А., Разенков И.А. Лидарные измерения усиления обратного рассеяния // Опт. и спектроскоп. 2016. Т. 120, № 2. С. 339–348.
11. Воробьев В.В. О применимости асимптотических формул восстановления параметров «оптической» турбулентности из данных импульсного лидарного зондирования. I. Уравнения // Оптика атмосф. и океана. 2016. Т. 29, № 10. С. 870–875; Vorob’ev V.V. On the applicability of asymptotic formulas of retrieving “optical” turbulence parameters from pulse lidar sounding data: I – Equations // Atmos. Ocean. Opt. 2017. V. 30, N 2. P. 156–161.
12. Воробьев В.В. О применимости асимптотических формул восстановления параметров «оптической» турбулентности из данных импульсного лидарного зондирования. II. Результаты численного моделирования // Оптика атмосф. и океана. 2016. Т. 29, № 11. С. 987–993; Vorob’ev V.V. On the applicability of asymptotic formulas of retrieving “optical” turbulence parameters from pulse lidar sounding data: II – Results of numerical simulation // Atmos. Ocean. Opt. 2017. V. 30, N 2. P. 162–168.
13. Татарский В.И. Распространение волн в турбулентной атмосфере. М.: Наука, 1967. 548 с.
14. Гурвич А.С., Кон А.И., Миронов В.Л., Хмелевцов С.С. Лазерное излучение в турбулентной атмосфере. М.: Наука, 1976. 280 с.
15. Разенков И.А. Оптимизация параметров турбулентного лидара // Оптика атмосф. и океана. 2019. Т. 32, № 1. С. 70–81; Razenkov I.A. Optimization of parameters of a turbulent lidar // Atmos. Ocean. Opt. 2019. V. 32, N 3. P. 349–360.
16. Разенков И.А. Экспериментальная оценка пика увеличения обратного рассеяния // Оптика атмосф. и океана. 2020. Т. 33, № 11. С. 874–879; Razenkov I.A. Experimental estimation of the backscatter enhancement peak // Atmos. Ocean. Opt. 2021. V. 34, N 2. P. 111–116.
17. Razenkov I.A., Banakh V.A., Gorgeev E.V. Lidar “BSE-4” for the atmospheric turbulence measurements // Proc. SPIE. 10833. DOI: 10.1117/12.2505183.
18. Разенков И.А. Оценка интенсивности турбулентности из лидарных данных // Оптика атмосф. и океана. 2020. Т. 33, № 1. С. 32–40; Razenkov I.A. Estimation of the turbulence intensity from lidar data // Atmos. Ocean. Opt. 2020. V. 33, N 3. P. 245–253.
19. Разенков И.А. Специфика зондирования пограничного слоя атмосферы турбулентным лидаром // Оптика атмосф. и океана. 2020. Т. 33, № 8. С. 643–648; Razenkov I.A. Specifics of sounding the atmospheric boundary layer with a turbulent lidar // Atmos. Ocean. Opt. 2020. V. 33, N 6. P. 610–615.
20. URL: http://mtp5.ru/pdf/mtp5h.compressed.pdf.
21. Гладких В.А., Мамышев В.П., Одинцов С.Л. Экспериментальные оценки структурной характеристики показателя преломления оптических волн в приземном слое атмосферы // Оптика атмосф. и океана. 2015. Т. 28, № 4. С. 309–318; Gladkikh V.A., Mamyshev V.P., Odintsov S.L. Experimental estimates of the structure parameter of the refractive index for optical waves in the surface air layer // Atmos. Ocean. Opt. 2015. V. 28, N 5. P. 426–435.
22. Шакина Н.П. Гидродинамическая неустойчивость в атмосфере. Л.: Гидрометеоиздат, 1990. 308 с.