Приведены результаты исследований горизонтальной ориентации кристаллических частиц, выполненных с помощью сканирующего поляризационного лидара ЛОЗА-М3. В 2018 и 2021 гг. проведено несколько серий измерений структуры кристаллической облачности верхних ярусов в режиме зенитного сканирования. В отличие от зондирования только в вертикальном направлении наблюдения зависимости характеристик лидарного сигнала (интенсивности и деполяризационного отношения) от угла наклона оси лидара позволяют идентифицировать фазовый состав облаков (водяные или кристаллические) и измерить распределение отклонения частиц относительно горизонтальной плоскости (флаттер). В слоях с выраженным зеркальным отражением взаимосвязь интенсивности сигнала с наклоном трассы зондирования при небольших углах (до 5°) хорошо описывается экспоненциальной зависимостью. Результаты зондирования при сканировании до углов 45–50° показали высокую вероятность существования уголкового отражения в ледяных облаках.
кристаллические облака, поляризационный лидар, деполяризация, ориентация частиц
1. Liou K.N. Influence of cirrus clouds on weather and climate processes: a global perspective // J. Geophys. Res. 1986. V. 103. P. 1799–1805.
2. Sassen K., Griffin M.K., Dodd G.C. Optical scattering and microphysical properties of subvisual cirrus clouds, and climatic implications // J. Appl. Meteorol. 1989. V. 28, N 2. P. 91–98.
3. Sassen K., Benson S. A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing: II. Microphysical properties derived from lidar depolarization // J. Atmos. Sci. 2001. V. 58, N 15. P. 2103–2112.
4. Noel V., Chepfer H., Ledanois G., Delaval A., Flamant P.H. Classification of particle effective shape ratios in cirrus clouds based on the lidar depolarization ratio // Appl. Opt. 2002. V. 41, N 21. P. 4245–4257.
5. You Y., Kattawar G.W., Yang P., Hu Y.X., Baum B.A. Sensitivity of depolarized lidar signals to cloud and aerosol particle properties // J. Quant. Spectrosc. Radiat. Transfer. 2006. V. 100, N 1–3. P. 470–482.
6. Hoareau C., Keckhut P., Moel V., Chepfer H., Baray J.-L. A decadal cirrus clouds climatology from ground-based and spaceborne lidars above the south of France (43.9°N–5.7°E) // Atmos. Chem. Phys. 2013. V. 13. P. 6951–6963.
7. Stillwell R.A., Neely III R.R., Thayer J.P., Shupe M.D., Turner D.D. Improved cloud-phase determination of low-level liquid and mixed-phase clouds by enhanced polarimetric lidar // Atmos. Meas. Tech. 2018. V. 11. P. 835–859.
8. Haarig M., Engelmann R., Ansmann A., Veselovskii I., Whiteman D.N., Althausen D. 1064nm rotational Raman lidar for particle extinction and lidar-ratio profiling: cirrus case study // Atmos. Meas. Tech. 2016. V. 9. P. 4269–4278.
9. Campbell J.R., Vaughan M.A., Oo M., Holz R.E., Lewis J.R., Welton E.J. Distinguishing cirrus cloud presence in autonomous lidar measurements // Atmos. Meas. Tech. 2015. V. 8. P. 435–449.
10. Lavigne C., Roblin A., Chervet P. Solar glint from oriented crystals in cirrus clouds // Appl. Opt. 2008. V. 47, N 3. P. 6266–6276.
11. Klotzsche S., Macke A. Influence of crystal tilt on solar irradiance of cirrus clouds // Appl. Opt. 2006. V. 45, N 5. P. 1034–1040.
12. Кауль Б.В., Самохвалов И.В. Ориентация частиц кристаллических облаков Ci: Часть 1. Ориентация при падении // Оптика атмосф. и океана. 2005. Т. 18, № 11. С. 963–967.
13. Chepfer H., Brogniez G., Goloub P., Breon F.M., Flamant P.H. Observations of horizontally oriented ice crystals in cirrus clouds with POLDER-1/ADEOS-1 // J. Quant. Spectrosc. Radiat. Transfer. 1999. V. 63. P. 521–543.
14. Masuda K., Ishimoto H. Influence of particle orientation on retrieving cirrus cloud properties by use of total and polarized reflectances from satellite measurements // J. Quant. Spectrosc. Radiat. Transfer. 2004. V. 85. P. 183–193.
15. Breon F.-M., Dubrulle B. Horizontally oriented plates in clouds // J. Atmos. Sci. 2004. V. 61. P. 2888–2898.
16. Borovoi A., Galileiskii V., Morozov A., Cohen A. Detection of ice crystal particles preferably oriented in the atmosphere by use of the specular component of scattered light // Opt. Express 2008. V. 16, N 11. P. 7625–7633.
17. Platt C.M.R. Lidar backscatter from horizontal ice crystal plates // J. Appl. Meteorol. 1978. V. 17. P. 482–488.
18. Noel V., Sassen K. Study of ice crystal orientation in ice clouds from scanning polarization lidar observations // J. Appl. Meteorol. 2005. V. 44, N 5. P. 653–664.
19. Chen W.N., Chiang C.W., Nee J.B. Lidar ratio and depolarization ratio for cirrus clouds // Appl. Opt. 2002. V. 41, N 30. P. 6470–6476.
20. Platt C.M.R., Abshire N.L., McNice G.T. Some microphysical properties of an ice cloud from lidar observation of horizontally oriented crystals // J. Appl. Meteorol. 1978. V. 17, N 8. P. 1220–1224.
21. Sassen K. Ice crystal habit discrimination with the optical backscatter depolarization technique // J. Appl. Meteorol. 1977. V. 16. P. 425–431.
22. Sassen K. Corona-produsing cirrus cloud properties derived from polarization lidar and photographic analyses // Appl. Opt. 1991. V. 30, N 24. P. 3421–3428.
23. Platt C.M.R., Abshire N.L., McNice G.T. Some microphysical properties of an ice cloud from lidar observation of horizontally oriented crystals // J. Appl. Meteorol. 1978. V. 17, N 8. P. 1220–1224.
24. Thomas L., Cartwright J.C., Wareing D.P. Lidar observation of the horizontal orientation of ice crystals in cirrus clouds // Tellus. 1990. V. 42B. P. 211–216.
25. Cho H.M., Yang P., Kattawar G.W., Nasiri S.L., Hu Y., Minnis P., Trepte C., Winker D. Depolarization ratio and attenuated backscatter for nine cloud types: Analyses based on collocated CALIPSO lidar and MODIS measurements // Opt. Express 2008. V. 16, N 6. P. 3931–3948.
26. Noel V., Chepfer H. A global view of horizontally oriented crystals in ice clouds from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) // J. Geophys. Res. 2010. V. 115. P. D00H23.
27. Yoshida R., Okamoto H., Hagihara Y., Ishimoto H. Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio // J. Geophys. Res. 2010. V. 115. P. D00H3.
28. Hunt W.H., Winker D.M., Vaughan M.A., Powell K.A., Lucker P.L., Weimer C. CALIPSO lidar description and performance assessment // J. Atmos. Ocean. Technol. 2009. V. 26, N 7. P. 1214–1228.
29. Kokhanenko G.P., Balin Yu.S., Klemasheva M.G., Nasonov S.V., Novoselov M.M., Penner I.E., Samoilova S.V. Scanning polarization lidar LOSA-M3: Opportunity for research of crystalline particle orientation in the clouds of upper layers // Atmos. Meas. Tech. 2020. V. 13. P. 1113–1127.
30. Borovoi A., Grishin I., Naats E., Oppel U. Backscattering peak of hexagonal ice columns and plates // Opt. Lett. 2000. V. 25, N 18. P. 1388–1390.
31. Konoshonkin A., Wang Zh., Borovoi A., Kustova N., Liu D., Xie Ch. Backscatter by azimuthally oriented ice crystals of cirrus clouds // Opt. Express 2016. V. 24, N 18. P. A1257–1268.
32. Borovoi A.G., Konoshonkin A.V., Kustova N.V., Veselovskii I.A. Contribution of corner reflection from oriented ice crystals to backscattering and depolarization characteristics for off-zenith lidar profiling // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 212. P. 88–96.
33. Шишко В.А., Брюханов И.Д., Ни Е.В., Кустова Н.В., Тимофеев Д.Н., Коношонкин А.В. Алгоритм интерпретации матриц обратного рассеяния света перистых облаков для восстановления их микрофизических параметров // Оптика атмосф. и океана. 2019. Т. 32, № 3. С. 186–192; Shishko V.A., Bryukhanov I.D., Nie E.V., Kustova N.V., Timofeev D.N., Konoshonkin A.V. Algorithm for interpreting light backscattering matrices of cirrus clouds for the retrieval of their microphysical parameters // Atmos. Ocean. Opt. 2019. V. 32, N 4. P. 393–399.
34. Самохвалов И.В., Брюханов И.Д., Шишко В.А., Кустова Н.В., Ни Е.В., Коношонкин А.В., Локтюшин О.Ю., Тимофеев Д.Н. Оценка микрофизических характеристик конденсационных следов самолетов по данным поляризационного лидара: теория и эксперимент // Оптика атмосф. и океана. 2019. Т. 32, № 3. С. 193–201; Samokhvalov I.V., Bryukhanov I.D., Shishko V.A., Kustova N.V., Nie E.V., Konoshonkin A.V., Loktyushin O.Yu., Timofeev D.N. Estimation of microphysical characteristics of contrails by polarization lidar data: theory and experiment // Atmos. Ocean. Opt. 2019. V. 32, N 4. P. 400–409.
35. Del Guasta M., Vallar E., Riviere O., Castagnoli F., Venturi V., Morandi M. Use of polarimetric lidar for the study of oriented ice plates in clouds // Appl. Opt. 2006. V. 45, N 20. P. 4878–4887.
36. Hayman M., Spuler S., Morley B., VanAndel J. Polarization lidar operation for measuring backscatter phase matrices of oriented scatterers // Opt. Express 2012. V. 20, N 28. P. 29553–9567.
37. Veselovskii I., Goloub P., Podvin T., Tanre D., Ansmann A., Korenskiy M., Borovoi A., Hu Q., Whiteman D.N. Spectral dependence of backscattering coefficient of mixed phase clouds over West Africa measured with two-wavelength Raman polarization lidar: Features attributed to ice-crystals corner reflection // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 202. P. 74–80.
38. Neely R.R., Hayman M., Stillwell R.A., Thayer J.P., Hardesty R.M., O’Neill M., Shupe M.D., Alvarez C. Polarization lidar at summit, greenland for the detection of cloud phase and particle orientation // J. Atmos. Ocean. Tech. 2013. V. 30. P. 1635–1655.
39. Hu Y., Vaughan M., Liu Zh., Lin B., Yang P., Flittner D., Hunt B., Kuehn R., Huang J., Wu D., Rodier Sh., Powell K., Trepte Ch., Winker D. The depolarization–attenuated backscatter relation: CALIPSO lidar measurements vs. theory // Opt. Express 2007. V. 15, N 9. P. 5327–5332.