Vol. 37, issue 07, article # 4

Nosov V. V., Lukin V. P., Nosov E. V., Torgaev A. V. Determination of the type of atmospheric turbulence from meteorological measurements in operational mode. // Optika Atmosfery i Okeana. 2024. V. 37. No. 07. P. 563–571. DOI: 10.15372/AOO20240704 [in Russian].
Copy the reference to clipboard
Abstract:

To determinate the type of atmospheric turbulence (Kolmogorov, coherent, etc.) in operational mode, a new technique has been developed based on algorithm for spectral analysis of sequential overlapping samples from a continuously replenished population of meteorological measurement data. The samples are formed by the sliding time window. Criterion for turbulence type is the slope of inertial interval of the temperature fluctuation spectrum near the maximum, which is equal to “-5/3" under Kolmogorov turbulence and “-8/3" under coherent turbulence. The slope is calculated from the linear regression equation at the initial part of the spectrum, the length of which is set by the level of decrease by one order of magnitude from the maximum. It is shown that such slopes of the spectra for the recorded meteosituations under urban conditions are distributed lognormally. It is found that the proportion of non-Kolmogorov turbulence in more than 5 million calculated spectra is much larger than expected and amounts to 75–97% depending on the estimation rigor. It is shown that sequences of spectra with the same slope correspond to regions of turbulence of the same type. Boundaries of the regions are defined with accuracy of the sliding window shift step. The size of the regions is estimated based on information about wind speed and registration duration. It is shown that under comparable conditions the extent of the regions can significantly exceed the one for an ordinary single sample. To accelerate the post processing of large datasets, the algorithm uses the Message Passing Interface (MPI) for a computing cluster with an arbitrary number of nodes. The field of application of the technique in astronomical practice is the evaluation and registration of the sizes of spatial regions of “strong" and “weak" turbulence along optical path, in which the intensity of turbulence is in fixed intervals, as well as the sizes of regions with fixed temperature stratification.

Keywords:

Kolmogorov turbulence, atmospheric non-Kolmogorov turbulence, coherent turbulence, turbulence region, meteorological measurements

Figures:
References:

1. Kolmogorov A.N. Lokal'naya struktura turbulentnosti v neszhimaemoi vyazkoi zhidkosti pri ochen' bol'shikh chislakh Reinol'dsa // Dokl. AN SSSR. 1941. V. 30, N 4. P. 299–303.
2. Obukhov A.M. O raspredelenii energii v spektre turbulentnogo potoka // Dokl. AN SSSR. 1941. V. 32, N 1. P. 22–24.
3. Monin A.S. Struktura atmosfernoi turbulentnosti // Teoriya veroyatnosti i ee primenenie. 1958. V. 3, iss. 3. P. 285–317.
4. Tatarskii V.I. Rasprostranenie voln v turbulentnoi atmosfere. M.: Nauka, 1967. 548 p.
5. Monin A.S., Yaglom A.M. Statisticheskaya gidromekhanika. V 2 v.: V. 1. SPb.: Gidrometeoizdat, 1992. 693 p.
6. Monin A.S., Yaglom A.M. Statisticheskaya gidromekhanika. V 2 v.: V. 2. SPb.: Gidrometeoizdat, 1996. 741 p.
7. Banakh V.A., Smalikho I.N., Falits A.V. Temperaturno-vetrovoe zondirovanie pogranichnogo sloya atmosfery v pribrezhnoi zone Baikala. I. Chislo Richardsona // Optika atmosf. i okeana. 2020. V. 33, N 8. P. 621–630.
8. Odintsov S.L. Razvitie i primenenie akusticheskikh sredstv diagnostiki atmosfernogo pogranichnogo sloya // Optika atmosf. i okeana. 2019. V. 32, N 9. P. 786–791.
9. Razenkov I.A. Evristicheskii podkhod k opredeleniyu strukturnoi kharakteristiki pokazatelya prelomleniya atmosfery po dannym turbulentnogo lidara // Optika atmosf. i okeana. 2022. V. 35, N 3. P. 195–204.
10. Marakasov D.A., Afanas'ev A.L., Gordeev E.V. Otsenka parametrov inertsionnogo intervala turbulentnogo spektra temperatury iz vremennykh ryadov dannykh akusticheskikh meteostantsii // Optika atmosf. i okeana. 2024. V. 37, N 3. P. 254–261.
11. Kolosov V.V., Dudorov V.V., Filimonov G.A., Panina A.S., Vorontsov M.A. Uchet vliyaniya krupnomasshtabnykh atmosfernykh neodnorodnostei v zadache rasprostraneniya lazernogo izlucheniya na protyazhennykh vysotnykh trassakh // Optika atmosf. i okeana. 2013. V. 26, N 12. P. 1034–1040.
12. Falits A.V., Banakh V.A. Chislennoe modelirovanie effekta usileniya obratnogo rasseyaniya v nekolmogorovskoi anizotropnoi srede // Optika atmosf. i okeana. 2023. V. 36, N 1. P. 19–25.
13. Shikhovtsev A.Yu., Kovadlo P.G., Kopylov E.A., Ibrahimov M.A., Ehgamberdiev Sh.A., Tillayev Yu.A. Energy spectra of atmospheric turbulence for calculating Cn2 parameter. I. Maidanak and Suffa Observatories in Uzbekistan // Atmosphere. 2021. V. 12, N 12. P. 1614.
14. Shikhovtsev A.Yu., Kovadlo P.G., Lezhenin A.A., Korobov O.A., Kiselev A.V., Russkikh I.V., Kolobov D.Y., Shikhovtsev M.Yu. Influence of atmospheric flow structure on optical turbulence characteristics // Appl. Sci. 2023. V. 13, N 3. P. 1282.
15. Marakasov D.A., Sukharev A.A., Tsvyk R.Sh. Issledovanie struktury turbulentnykh nedorasshirennykh sverkhzvukovykh strui metodom lazernogo prosvechivaniya // Optika atmosf. i okeana. 2023. V. 36, N 8. P. 694–701.
16. Agafontsev M.V., Gerasimova L.O., Reino V.V., Shesternin A.N. Issledovanie konvektivnoi turbulentnosti nad nagretoi poverkhnost'yu metodom skorostnoi termografii // Optika atmosf. i okeana. 2023. V. 36, N 7. P. 584–590.
17. Volkov M.V., Garanin S.G., Kozlova T.I., Konoval'tsov M.I., Kopalkin A.V., Lebedev R.S., Starikov F.A., Techko O.L., Tyutin S.V., Khokhlov S.V., Tsykin V.S. Fazirovka izlucheniya 7-kanal'nogo optovolokonnogo lazera s dinamicheskimi turbulentnymi iskazheniyami fazy s ispol'zovaniem stokhasticheskogo parallel'nogo gradientnogo algoritma pri shirine polosy 450 kGts // Kvant. elektron. 2020. V. 50, N 7. P. 694–699. DOI: 10.1070/QEL17193.
18. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V. Formirovanie turbulentnosti v astronomicheskikh observatoriyakh yuga Sibiri i Severnogo Kavkaza // Optika atmosf. i okeana. 2019. V. 32, N 3. P. 1–19. DOI: 10.15372/AOO20190309.
19. Nosov V.V., Kovadlo P.G., Lukin V.P., Nosov E.V., Torgaev A.V. Peremezhaemost' kolmogorovskoi i kogerentnoi turbulentnosti v gornom pogranichnom sloe (obzor) // Optika atmosf. i okeana. 2021. V. 34, N 9. P. 726–749. DOI: 10.15372/AOO20210909.
20. Azbukin A.A., Bogushevich A.YA., Il'ichevskii V.S., Korol'kov V.A., Tikhomirov A.A., Shelevoi V.D. Avtomatizirovannyi ul'trazvukovoi meteorologicheskii kompleks AMK-03 // Meteorol. i gidrol. 2006. N 11. P. 89–97.
21. Azbukin A.A., Bogushevich A.Ya., Lukin V.P., Nosov V.V., Nosov E.V., Torgaev A.V. Apparatno-programmnyi kompleks dlya issledovanii struktury polei turbulentnykh fluktuatsii temperatury i vetra // Optika atmosf. i okeana. 2018. V. 31, N 5. P. 378–384.
22. Tikhomirov A.A., Korol'kov V.A., Smirnov S.V., Azbukin A.A., Bogushevich A.YA., Kal'chikhin V.V., Kobzev A.A., Kurakov S.A., Tel'minov A.E., Bogomolov V.Yu., Kabanov M.M., Kapustin S.N., Repina I.A., Pashkin A.D., Stepanenko V.M. Meteorologicheskie nablyudeniya i ikh pribornoe obespechenie v IMKES SO RAN // Optika atmosf. i okeana. 2022. V. 35, N 2. P. 122–131.
23. Van der Hoven I. Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour // J. Meteorol. 1957. V. 14, N 2. P. 160–164.
24. Cooley J.W., Tukey J.W. An algorithm for the machine calculation of complex Fourier series // Math. Comput. 1965. V. 19. P. 297–301.
25. Fisher R.A. Statisticheskie metody dlya issledovatelei. M.: Gosstatizdat, 1958. 268 p.
26. Martens L.K. (gl. red.) Tekhnicheskaya entsiklopediya: v 26 t. 2-e izd. M.: ONTI, 1937–1941.
27. Gurvits A., Kurant R. Teoriya funktsii. M.: Nauka, 1968. 648 p.
28. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V. Struktura turbulentnosti nad nagretymi poverkhnostyami. Chislennye resheniya // Optika atmosf. i okeana. 2016. V. 29, N 1. P. 23–30. DOI: 10.15372/AOO20160103.
29. Nosov V.V., Kovadlo P.G., Lukin V.P., Nosov E.V., Torgaev A.V. Dokazatel'stvo gipotezy KHopfa o strukture turbulentnosti (pamyati Tatarskogo) // Optika atmosf. i okeana. 2023. V. 36, N 1. P. 12–18. DOI: 10.15372/AOO20230102.