Малые газовые составляющие (МГС) атмосферы, эмитируемые водной поверхностью Земли, оказывают существенное влияние на химические процессы в атмосфере, погодообразование и глобальные изменения климата. В обзоре представлен анализ основных МГС, эмитируемых поверхностью морских акваторий, а также заболоченных территорий Земли. Также рассмотрена техника локального/дистанционного газоанализа небольшого числа МГС, включая спектроскопию внутрирезонаторного ослабления сигнала во времени, оптико-акустическую спектроскопию. Рассмотрены подходы к приборной реализации средств абсорбционной лазерной спектроскопии для контроля большого количества МГС атмосферы с использованием параметрических генераторов света в качестве источников перестраиваемого по частоте лазерного излучения.
малые газовые составляющие атмосферы, граница «водная поверхность – атмосфера», лазерная абсорбционная спектроскопия, ИК-диапазон спектра
1. Andreae M.O., Crutzen P.J. Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry // Science. 1997. V. 276. P. 1052–1058.
2. Newhook R., Meek M.E., Caldbick D. Concise International Chemical Assessment Document 26: Carbon Disulphide / WMO // Wissenschaftliche Verlagsgesellschaft Stuttgart. URL: https://apps.who.int/iris/handle/10665/42554 (last access: 23.06.2022).
3. Xie H.X., Moore R.M., Miller W.L. Photochemical production of carbon disulphide in seawater // J. Geophys. Res. 1998. V. 103. P. 5635–5644.
4. DeLeon-Rodrigueza N., Lathemb T.L., Rodriguez-Ra L.M., Barazeshc J.M., Andersond B.E., Beyersdorfd A.J., Ziembad L.D., Berginb M., Nenesb A., Konstantinidisa K.T. Microbiome of the upper troposphere: Species composition and prevalence, effects of tropical storms, and atmospheric implications // Proc. Nat. Acad. Sci. USA. 2013. V. 110. P. 2575–2580.
5. Simo R., Pedros-Alio C. Role of vertical mixing in controlling the oceanic production of dimethyl sulphide // Nature. 1999. V. 402. P. 396–399.
6. Montzka S.A., Aydin M., Battle M., Butler J.H., Saltzman E.S., Hall B.D., Clarke A.D., Mondeel D., Elkins J.W. A 350-year atmospheric history for carbonyl sulfide inferred from Antarctic firn air and air trapped in ice // J. Geophys. Res. 2004. V. 109. D22302.
7. Watts S.F. The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon disulfide and hydrogen sulfide // Atmos. Environ. 2000. V. 34, N 5. P. 761–779.
8. Liss P.S., Marandino C.A., Dahl E.E., Helmig D., Hintsa E.J., Hughes C., Johnson M.T., Moore R.M., Plane J.M.C., Quack B., Singh H.B., Stefels J., von Glasow R., Williams J. Short-lived trace gases in the surface ocean and the atmosphere //Ocean–Atmosphere Interactions of Gases and Particles. England: Springer, 2014. DOI: 10.1007/978-3-642-25643-1_1.
9. The HITRAN Database. England, 2022. URL: https://hitran.org/ (last access: 1.06.2022).
10. Wada E., Hattori A. Nitrogen in the Sea: Forms, Abundance, and Rate Processes. Boca Raton: CRC Press, 1991. 224 p.
11. Salawitch R.J. Atmospheric chemistry – biogenic bromine // Nature. 2006. V. 439. P. 275–277.
12. Yang M., Huebert B.J., Blomquist B.W., Howell S.G., Shank L.M., McNaughton C.S., Clarke A.D., Hawkins L.N., Russell L.M., Covert D.S., Coffman D.J., Bates T.S., Quinn P.K., Zagorac N., Bandy A.R., de Szoeke S.P., Zuidema P.D., Tucker S.C., Brewer W.A., Yang X., Cox R.A., Warwick N.J., Pyle J.A., Carver G.D., O’Connor F.M., Savage N.H. Tropospheric bromine chemistry and its impacts on ozone: A model study // J. Geophys. Res.: Atmos. 2005. V. 110. P. D23311. DOI: 10.1029/2005JD 006244.
13. Carpenter L.J., Nightingale P.D. Chemistry and release of gases from the surface ocean // Chem. Rev. 2015. V. 115, N 10. P. 4015–4034.
14. Novak G.A., Bertram T.H. Reactive VOC production from photochemical and heterogeneous reactions occurring at the air–ocean interface // Acc. Chem. Res. 2020. V. 53. P. 1014–1023.
15. Brüggemann M., Hayeck N., George C. Interfacial photochemistry at the ocean surface is a global source of organic vapors and aerosols // Nature Commun. 2018. V. 9. DOI: 10.1038/s41467-018-04528-7.
16. Beale R., Liss P.S., Nightingale P.D. First oceanic measurements of ethanol and propanol // Geophys. Res. Lett. 2010. V. 37, iss. 24. DOI: 10.1029/2010GL045534.
17. Dixon J.L., Beale R., Nightingale P.D. Microbial methanol uptake in the northeast Atlantic waters // ISME J. 2011. V. 5. P. 704–716.
18. Dixon J.L., Beale R., Nightingale P.D. Rapid biological oxidation of methanol in the tropical Atlantic: Significance as a microbial carbon source // Biogeosciences. 2011. V. 8. P. 2707–2716.
19. Marandino C.A., de Bruyn W.J., Miller S.D., Prather M.J., Saltzman E.S. Oceanic uptake and the global atmospheric acetone budget // Geophys. Res. Lett. 2005. V. 32. DOI: 10.1029/2005GL023285.
20. Mezcua M., Aguera A., Hernando M.D., Piedra L., Fernandez-Alba A.R. Determination of methyl tert.-butyl ether and ter.-butyl alcohol in seawater samples using purge-and-trap enrichment coupled to gas chromatography with atomic emission and mass spectrometric detection // J. Chromatogr A. 2003. V. 999. P. 81–90.
21. Read K.A., Carpenter L.J., Arnold S.R., Beale R., Nightingale P.D., Hopkins J.R., Lewis A.C., Lee J.D., Mendes L., Pickering S.J. Multiannual observations of acetone, methanol, and acetaldehyde in remote tropical Atlantic air: Implications for atmospheric OVOC budgets and oxidative capacity // Environ. Sci. Technol. 2012. V. 46. P. 11028–11039.
22. Heald C.L., Goldstein A.H., Allan J.D., Aiken A.C., Apel E., Atlas E.L., Baker A.K., Bates T.S., Beyersdorf A.J., Blake D.R., Campos T., Coe H., Crounse J.D., DeCarlo P.F., de Gouw J.A., Dunlea E.J., Flocke F.M., Fried A., Goldan P., Griffin R.J., Herndon S.C., Holloway J.S., Holzinger R., Jimenez J.L., Junkermann W., Kuster W.C., Lewis A.C., Meinardi S., Millet D.B., Onasch T., Polidori A., Quinn P.K., Riemer D.D., Roberts J.M., Salcedo D., Sive B., Swanson A.L., Talbot R., Warneke C., Weber R.J., Weibring P., Wennberg P.O., Worsnop D.R., Wittig A.E., Zhang R., Zheng J., Zheng W. Total observed organic carbon (TOOC) in the atmosphere: A synthesis of North American observations // Atmos. Chem. Phys. 2008. V. 8. P. 2007–2025.
23. Singh H.B., Salas L.J., Chatfield R.B., Czech E., Fried A., Walega J., Evans M.J., Field B.D., Jacob D.J., Blake D., Heikes B., Talbot R., Sachse G., Crawford J.H., Avery M.A., Sandholm S., Fuelberg H. Analysis of the atmospheric distribution, sources, and sinks of oxygenated volatile organic chemicals based on measurements over the Pacific during TRACE-P // J. Geophys. Res.: Atmos. 2004. V. 109. P. D15S07.
24. Beale R., Dixon J.L., Arnold S.R., Liss P.S., Nightingale P.D. Methanol, acetaldehyde and acetone in the surface waters of the Atlantic Ocean // J. Geophys. Res.: Oceans. 2013. V. 118. P. 5412–5425.
25. Yang M., Beale R., Liss P., Johnson M., Blomquist B., Nightingale P. Air-sea fluxes of oxygenated volatile organic compounds across the Atlantic Ocean // Atmos. Chem. Phys. 2014. V. 14. P. 7499–7517.
26. Donahue N.M., Prinn R.G. Non-methane hydrocarbon chemistry in the remote marine boundary layer // J. Geophys. Res. 1993. V. 95. P. 18387–18411.
27. Li M., Huang X., Jianfeng L., Song Y. Estimation of biogenic volatile organic compound (BVOC) emissions from the terrestrial ecosystem in China using real-time remote sensing data // Atmos. Chem. Phys. 2012. V. 12, N 3. P. 6551–6592. DOI: 10.5194/acpd-12-6551-2012.
28. Wilson D.F., Swinnerton J., Lamontagne R. Production of carbon monoxide and gasesous hydrocarbons in seawater – relation to dissolved organic carbon // Science. 1970. V. 168. P. 1576–1577.
29. Atlas E.L., Ridley B.A., Hubler G., Walega J.G., Carroll M.A., Montzka D.D., Huebert B.J., Norton R.B., Grahek F.E., Schauffler S. Partitioning and budget of NOy species during the Mauna Loa observatory photochemistry experiment // J. Geophys. Res. 1992. V. 97. P. 10449–10462.
30. Atlas E., Pollock W., Greenberg J., Heidt L., Thompson A.M. Alkyl nitrates, nonmethane hydrocarbons and halocarbon gases over the equatorial Pacific – Ocean during Saga-3 // J. Geophys. Res.: Atmos. V. 98. P. 16933–16947.
31. Beyersdorf A.J., Blake D.R., Swanson A., Meinardi S., Rowland F.S., Davis S. Abundances and variability of tropospheric volatile organic compounds at the South Pole and other Antarctic locations // Atmos. Environ. 2010. V. 44. P. 4565–4574.
32. Bange H.W. Gaseous Nitrogen Compounds (NO, N2O, N2, NH3) in the Ocean // Nitrogen in the Marine Environment. Chapter 2. 2008. P. 51–94.
33. Quinn P.K., Asher W.E., Charlson R.J. Equilibria of the marine multiphase ammonia system // J. Atmos. Chem. 1992. V. 14. P. 11–30. DOI: 10.1007/BF00115219.
34. Savoie D.L., Prospero J.M., Larsen R.J., Huang F., Izaguirre M.A., Huang T., Snowdon T.H., Custals L., Sanderson C.G. Nitrogen and sulfur species in Antarctic aerosols at Mawson, Palmer Station, and Marsh (King George Island) // J. Atmos. Chem. 1992. V. 17. P. 95. DOI: 10.1007/BF00702821.
35. Johnson M.T., Bell T.G. Coupling between dimethylsupfide emissions and the ocean–atmosphere exchange of ammonia // Environ. Chem. 2008. V. 5. P. 259–267. DOI: 10.1071/EN08030.
36. Ульбаев Т.С., Лукьянова Т.С., Мансуров Г.Н. Болотные газы как одна из естественных причин самовозгорания в заболоченных районах // Вестн. МГОУ. 2012. Т. 2. С. 161–171.
37. Миндубаев А.З., Белостоцкий Д.Е., Минзанова С.Т., Миронов В.Ф., Алимова Ф.К., Миронова Л.Г., Коновалов А.И. Метаногенез: биохимия, технология, применение // Учен. зап. Казан. ун-та. 2010. Т. 152, кн. 2. С. 178–191.
38. Лыков И.Н., Сафронова С.А., Морозенко М.И., Ефремов Г.В. Метагенез и глобальные климатические процессы // Природа. 2009. Т. 8. С. 40–44.
39. Lietti L., Groppi G., Ramella C. NH3 oxidation during the catalytic combustion of bio-masses-related fuels over Mn-substituted hexaaluminates // Catal. Lett. 1998. V. 53, N 1–2. P. 91–95.
40. Bari S. Effect of carbon dioxide on the performance of biogas/diesel duel-fuel engine // Renewable Energy. 1996. V. 9, N 1–4. P. 1045–1048.
41. Kovacs K.L., Bagyinka Cs., Bodrossy L., Csaki R., Fodor B., Gyorfi K., Hanczar T., Kalman M., Osz J., Perei K., Polyak B., Rakhely G., Takacs M., Toth A., Tusz J. Recent advances in biohydrogen research // Pflugers Arch. Eur. J. Physiol. 2000. V. 439, N 7. P. 81–83.
42. Hunt J.M. Petroleum Geochemistry and Geology, Second Edition. New York: Freeman and Co, 1996. 743 p.
43. Milkov A.V., Giuseppe E. Revised genetic diagrams for natural gases based on a global dataset of > 20,000 samples // Organic Geochem. 2018. V. 125. P. 109–120.
44. Whiticar M.J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane // Chem. Geology. 1999. V. 161. P. 291–314.
45. Нейштадт М.И. Мировой природный феномен – заболоченность Западно-Сибирской равнины // Изв. АН СССР. Сер. Геогр. 1971. № 1. С. 21–34.
46. Глухова Т.В., Вомперский С.Э., Ковалев А.Г. Эмиссия СО2 с поверхности олиготрофных болот южно-таежной зоны европейской территории России с учетом микрорельефа // Почвоведение. 2014. № 1. С. 48–57.
47. Глаголев М.В., Чистотин М.В., Шнырев Н.А., Сирин А.А. Летне-осенняя эмиссия углерода и метана осушенными торфяниками, измененными при хозяйственном использовании, и естественными болотами (на примере участка Томской области) // Агрохимия. 2008. № 5. С. 46–58.
48. Головацкая Е.А., Дюкарев Е.А. Влияние факторов среды на эмиссию СО2 с поверхности олиготрофных торфяных почв Западной Сибири // Почвоведение. 2012. № 6. C. 658–667.
49. Glukhova T.V., Ilyasov D.V., Vompersky S.E., Golovchenko A.V., Manucharova N.A., Stepanov A.L. Soil respiration in alder swamp (alnus glutinosa) in Southern Taiga of European Russia depending on microrelief // Forests. 2021. V. 12. P. 496. DOI: 10.3390/f12040496.
50. Helfter C., Gondwe M., Murray-Hudson M., Makati A., Skiba U. From sink to source: high inter-annual variability in the carbon budget of a Southern African wetland // Phil. Trans. R. Soc. A. 2021. V. 380. 20210148. DOI: 10.1098/rsta.2021.0148.
51. Глаголев М.В. Аннотированный список литературных источников по результатам измерений потоков СН4 и СО2 на болотах России // Динам. окр. ср. и глоб. изм. клим. 2010. Т. 1, № 2. С. 5–57.
52. Friborg T., Soegaard H., Christensen T.R., Lloyd C.R., Panikov N.S. Siberian wetlands: Where a sink is a source // Geophys. Res. Lett. 2003. V. 30, N 21. P. 2129. DOI: 10.1029/2003GL017797.
53. Казанцев В.С. Эмиссия метана из болотных экосистем северной части Западной Сибири. Автореф. дис. … канд. биол. наук. 2013. 27 с.
54. Мигловец М.Н. Эмиссия метана в растительных сообществах мезоолиготрофного болота средней тайги. Автореф. дис. … канд. биол. наук. 2014. 23 с.
55. Raturi A., Singh H., Kumar P., Chanda A., Shukla N. Characterizing the post-monsoon CO2, CH4, N2O, and H2O vapor fluxes from a tropical wetland in the Himalayan foothill // Environ. Monit. Assess. 2022. V. 194. P. 50.
56. Hergoualc’h K., Dezzeo N., Verchot L.V., Martius C., van Lent J., del Agulia Pasquel J., López Gonzales M. Spatial and temporal variability of soil N2O and CH4 fluxes along a degradation gradient in a palm swamp peat forest in the Peruvian Amazon // Glob. Change Biol. 2020. V. 26. P. 7198–7216.
57. Vourlitis G.L., Oechel W.C. The Role of Northern Ecosystems in the global Methane budget // Ecol. Studies. 1996. V. 124. P. 266–289.
58. Kaplan J.O., Folberth G., Hauglustaine D.A. Role of methane and biogenic volatile organic compound sources in late glacial and Holocene fluctuations of atmospheric methane concentrations // Global biogeochem. cycl. 2006. V. 20, N 2. DOI: 10.1029/2005GB002590.
59. Carmichael M.J., Bernhardt E.S., Bräuer S.L., Smith W.K. The role of vegetation in methane flux to the atmosphere: should vegetation be included as a distinct category in the global methane budget? // Biogeochemistry. 2014. V. 119. P. 1–24.
60. Turetsky M.R., Kotowska A., Bubier J., Dise N.B., Crill P., Hornibrook E.R.C., Minkkinen K., Moore T.R., Myers-Smith I.H., Nykänen H., Olefeldt D., Rinne J., Saarnio S., Shurpali N., Tuittila E., Waddington J.M., White J.R., Wickland K.P., Wilmking M. A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands // Glob. Chang. Biol. 2014. V. 20, N 7. P. 2183–2197.
61. Akhtar H., Lupascu M., Sukri R.S., Smith T.E.L., Cobb A.R., Swarup S. Significant sedge-mediated methane emissions from degraded tropical peatlands // Environ. Res. Lett. 2021. V. 16. P. 014002.
62. Bao T., Jia G., Xu X. Wetland Heterogeneity Determines Methane Emissions: A Pan-Arctic Synthesis // Environ. Sci. Technol. 2021. V. 55. P. 10152–10163.
63. Ward N.D., Bianchi T.S., Martin J.B., Quintero C.J., Sawakuchi H.O., Cohen M.J. Pathways for Methane Emissions and Oxidation that Influence the Net Carbon Balance of a Subtropical Cypress Swamp // Front. Earth Sci. 2020. V. 8:573357. DOI: 10.3389/feart.2020.573357.
64. Rinnan R., Rinnan A., Holopainen T., Holopainen J.K., Pasanen P. Emission of non-methane volatile organic compounds (VOCs) from boreal peatland microcosms-effects of ozone exposure // Atmos. Environ. 2005. V. 39. P. 921–930.
65. Газоанализаторы атмосферного воздуха. СПб., 2022. URL: https://www.optec.ru/produktsiya.html?c_dept_ id=16 (дата обращения: 1.06.2022).
66. The LGR advantage: the technology. San Jose, 2022. URL: http://www.lgrinc.com/advantages/unique-technology.php (last access: 1.06.2022).
67. Chow K.K., Short M., Zeng H. A comparison of spectroscopic techniques for human breath analysis // Biomed. Spectrosc. Imag. 2012. V. 1. P. 339–353.
68. de Gouw J.A., Te Lintel Hekkert S., Mellqvist J., Warneke C., Atlas E.L., Fehsenfeld F.C., Fried A., Frost G.J., Harren F.J.M., Holloway J.S., Lefer B., Lueb R., Meagher J.F., Parrish D.D., Patel M., Pope L., Richter D., Rivera C., Ryerson T.B., Samuelsson J., Walega J., Washenfelder R.A., Weibring P., Zhu X. Airborne measurements of ethene from industrial sources using laser photo-acoustic spectroscopy // Environ. Sci. Technol. 2009. V. 43, N 7. P. 2437–2442.
69. Bijnen F.G.C., Reuss J., Harren F.J.M. Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection // Rev. Sci. Instrum. 1996. V. 67. P. 2914.
70. Белов М.Л., Городничев В.А., Федотов Ю.В., Козинцев В.И. Лазерный оптико-акустический анализ многокомпонентных газовых смесей. М.: Изд-во МГТУ им. Н.Э. Баумана, 2003. 352 c.
71. Miklós A., Hess P., Bozóki Z. Application of acoustic resonators in photoacoustic trace gas analysis // Rev. Sci. Instrum. 2001. V. 72, N 4. P. 1937–1955.
72. Zéninari V., Vallon R., Risser C., Parvitte B. Photoacoustic detection of methane in large concentrations with a Helmholtz sensor: Simulation and experimentation // Int. J. Thermophys.2016. V. 37, N 1. P. 1–11.
73. Karapuzikov A.A., Sherstov I.V., Karapuzikov A.I., Shtyrov M.Y., Dukhovnikova N.Y., Zenov K.G., Boyko A.A., Starikova M.K., Tikhonyuk I.I., Miroshnichenko I.B., Miroshnichenko M.B., Kolker D.B., Myakishev Y.B., Lokonov V.N., Kistenev Y.V., Kuzmin D.A. LaserBreeze gas analyzer for noninvasive diagnostics of air exhaled by patients // Phys. Wave Phenom. 2014. V. 22, N 3. P. 189–196.
74. Santagata R., Tran D., Argence B., Lopez O., Tokunaga S., Wiotte F., Mouhamad H., Goncharov A., Abgrall M., Le Coq Y., Alvarez-Martinez H., Targat R.Le, Lee W., Xu D., Pottie P.-E., Darquié B., Amy-Klein A. High-precision methanol spectroscopy with a widely tunable SI-traceable frequency-comb-based mid-infrared QCL // Optica. 2019. V. 6, N 4 P. 411–423.
75. Jinbao X., Feng Zh., Kolomenskii A., Bounds J., Zhang S., Amani M., Fernyhough L.J., Schuessler H. Sensitive acetone detection with a mid-IR interband cascade laser and wavelength modulation spectroscopy // OSA Continuum. 2019. V. 2, N 3. P. 640–654.
76. Zhenhai Xi, Kaiyuan Zheng, Chuantao Zheng, Haipeng Zhang, Fang Song, Chunguang Li, Weilin Ye, Yu Zhang, Yiding Wang, Frank K. Near-infrared dual-gas sensor system for methane and ethane detection using a compact multipass cell // Front. Phys. 2022. DOI: 10.3389/fphy.2022.843171.
77. Löhden B., Kuznetsova S., Sengstock K., Baev V.M., Goldman A., Cheskis S., Pálsdóttir B. Fiber laser intracavity absorption spectroscopy for in situ multicomponent gas analysis in the atmosphere and combustion environments // Appl. Phys. B. 2011. V. 102. P. 331–344. DOI: 10.1007/s00340-010-3995-9.
78. Sun Yi, Liu Q., Zha S., Qiu X., Chang H.-R., Feng S., Guo G., He X., He Q., C. Li. Sub-ppb nitrogen dioxide detection based on resonant photoacoustic spectroscopy // Microw. Opt. Technol. Lett. 2021. V. 63. P. 2058–2062.
79. Xue Zheng-Yue, Li Jun, Liu Xiao-Hai, Wang Jing-Jing, Gao Xiao-Ming, Tan Tu. Measurement and profile inversion of atmospheric N2O absorption spectrum based on laser heterodyne detection // Acta Phys. Sin. 2021. V. 70, N 21. P. 217801. DOI: 10.7498/aps.70.20210710.
80. Jinyi Li, Sen Yang, Ruixue Wang, Zhenhui Du, Yingying Wei. Ammonia detection using hollow waveguide enhanced laser absorption spectroscopy based on a 9.56 mm quantum cascade laser // AOPC 2017: Opt. Spectrosc. Imag. 2017. DOI: 10.1117/12.2285338.
81. Qiuwu Liu, Yafeng Chen, Jie Wang, Jian Huang, Shunxing Hu. Measurement of atmospheric NO2 profile using three-wavelength dual-differential absorption lidar // Proc. SPIE. 2017. V. 10605, id. 106053L. DOI: 10.1117/12.2295725.
82. Liang A., Han G., Ma X., Xiang C., Zheng Y., Zhang T., Xu H., Gong W. Development of differential absorption LiDAR system at 1.57 mm for sensing carbon dioxide in China // Int. Geosci. Remote Sens. Symp. 2017. P. 5268–5271.
83. Li J., Chen W., Yu B. Recent progress on infrared photoacoustic spectroscopy techniques // Appl. Spectr. Rev. 2011. V. 46. P. 440–471.
84. Vodopyanov K.I., Maffetone J.P., Zwieback I., Ruderman W. AgGaS2 optical parametric oscillator continuously tunable from 3.9 to 11.3 mm // Appl. Phys. Lett. 1999. V. 75. P. 1204.
85. Esteban-Martin A., Marchev G., Badikov V., Panyutin V., Petrov V., Shevyrdyaeva G., Badikov D., Starikova M., Sheina S., Fintisova A., Tyazhev A. High-energy optical parametric oscillator for the 6 mm spectral range based on HgGa2S4 pumped at 1064 nm // Laser Photon. Rev. 2013. V. 7, N 6. P. L89–L92.
86. Kostyukova N., Boyko A., Badikov V., Badikov D., Shevyrdyaeva G., Panyutin V., Marchev G., Kolker D., Petrov V. Widely tunable in the mid-IR BaGa4Se7 optical parametric oscillator pumped at 1064 nm // Opt. Lett. 2016. V. 41. P. 035039.
87. Chuchumishev D., Trifonov A., Oreshkov B., Xu X., Buchvarov I. High-energy picosecond kHz optical parametric oscillator/amplifier tunable between 3 and 3.5 mm // Appl. Phys. B. 2017. V. 124, N 7. ID 147.
88. Huang H., Wang S., Liu X., Shen D. Simultaneous dual-wavelength nanosecond mid-infrared optical parametric oscillator // Infrared Phys. Technol. 2018. V. 93. P. 91–95.
89. Matvienko G.G., Romanovskii O.A., Sadovnikov S.A., Sukhanov A.Ya., Kharchenko O.V., Yakovlev S.V. Study of the possibility of using a parametric-light-generator-based laser system for lidar probing of the composition of the atmosphere // J. Opt. Technol. 2017. V. 84, N 6. P. 408–417.
90. Romanovskii O.A., Sadovnikov S.A., Kharchenko O.V., Yakovlev S.V. Broadband IR lidar for gas analysis of the atmosphere // Appl. Spectrosc. 2018. V. 85, N 3. P. 457.
91. Cole B., Goldberg L., Chinn S., Pomeranz L.A., Zawilski K.T., Schunemann P.G., McCarthy J. Compact and efficiency mid-IR OPO source pumped by a passively Q-switched Tm:YAP laser// Opt. Lett. 2018. V. 43. P. 1099–1102.
92. Колкер Д.Б., Пустовалова Р.В., Старикова М.К., Карапузиков А.И., Карапузиков А.А., Кузнецов О.М., Кистенев Ю.В. Наносекундный параметрический генератор света в среднем ИК-диапазоне с двухпроходной накачкой // Приборы и техника эксперимента. 2012. № 2. С. 124–128.
93. Devi K., Padhye A., Schunemann P.G., Ebrahim-Zadeh M. Multimilliwatt, tunable, continuous-wave, mid-infrared generation across 4.6–4.7 mm based on orientation-patterned gallium phosphide // Opt. Lett. 2018. V. 43. P. 2284.
94. Fu Q., Xu L., Liang S., Shepherd D.P., Richardson D.J., Alam S. Widely tunable, narrow-linewidth, high-peak-power, picosecond midinfrared optical parametric amplifier // IEEE J. Sel. Top. Quant. Electron. 2018. V. 24. P. 5100706.
95. Boyko A.A., Schunemann P.G., Guha S., Kostyukova N.Y., Kolker D.B., Panyutin V.L., Marchev G.M., Pasiskevicius V., Zukauskas A., Mayorov F., Petrov V. Optical parametric oscillator pumped at ~ 1 mm with intracavity mid-IR difference-frequency generation in OPGaAs // Opt. Mater. Express. 2018. V. 8. P. 549.
96. Ganikhanov F., Caughey T., Vodopyanov K.L. Narrow-linewidth middle-infrared ZnGeP2 optical parametric oscillator // J. Opt. Soc. Am. B. 2001. V. 18, N 6. P. 818–822.
97. Schlup P., Baxter G.W., McKinnie I.T. Single-mode near- and mid-infrared periodically poled lithium niobate optical parametric oscillator // Opt. Commun. 2000. V. 176. P. 267–271.
98. Wang Li, Boyko A.A., Schirrmacher A., Büttner E., Chen W., Ye N., Petrov V. Narrow-band periodically poled lithium niobate nonresonant optical parametric oscillator // Opt. Lett. 2019. V. 44, N 23. P. 5659–5662.
99. Erushin E., Nyushkov B., Ivanenko A., Korel I., Boyko A., Kostyukova N., Kolker D. Spectral narrowing and wavelength tuning in injection-seeded pulsed optical parametric oscillator for photoacoustic methane analyzer // CLEO/Europe-EQEC. 2021. 172135. DOI: 10.1109/CLEO/Europe-EQEC52157.2021.9542063.
100. Kistenev Yu.V., Skiba V.E., Prischepa V.V., Vrazhnov D.A., Borisov A.V. Super-resolution reconstruction of noisy gas-mixture absorption spectra using deep learning // J. Quant. Spectrosc. Radiat. Transfer. 2022. DOI: 10.1016/j.jqsrt.2022.108278.
101. Bozóki Z., Pogány A., Szabó G. Photoacoustic instruments for practical applications: Present, potentials, and future challenges // Appl. Spec. Rev. 2011. V. 46. P. 1–37.
102. Boyko A.A., Zenov K.G., Starikova M.K., Kolker D.B., Karapuzikov A.A., Kistenev Y.V., Kuzmin D.A. Twin HgGa2S4 optical parametric oscillator at 4.3–10.78 mm for biomedical applications // Proc. SPIE. 2014. V. 9448. P. 944806.
103. Колкер Д.Б., Пустовалова Р.В., Старикова М.К., Карапузиков А.И., Карапузиков А.А., Кузнецов О.М., Кистенев Ю.В. Наносекундный параметрический генератор света в среднем ИК-диапазоне с двухпроходной накачкой // Приборы и техника эксперимента. 2012. № 2. С. 124.
104. Колкер Д.Б., Пустовалова Р.В., Старикова М.К., Карапузиков А.И., Карапузиков А.А., Кузнецов О.М., Кистенев Ю.В. Параметрический генератор в области 2,4–4,3 мкм с накачкой малогабаритным наносекундным Nd:YAG-лазером // Оптика атмосф. и океана. 2011. Т. 24, № 10. С. 910–914; Kolker D.B., Pustovalova R.V., Starikova M.K., Karapuzikov A.I., Karapuzikov A.A., Kuznetsov O.M., Kistenev Y.V. Оptical parametric oscillator within 2.4–4.3 mm pumped with a nanosecond ND:YAG laser // Atmos. Ocean. Opt. 2012. V. 25, N 1. P. 77–81.
105. Городничев В.А. Разработка методов и оптико-электронных средств лазерного оперативного контроля многокомпонентных газовых смесей составляющих ракетных топлив и других токсичных веществ: дис. … д-ра тех. наук. М.: Моск. гос. техн. ун-т им. Н.Э. Баумана, 2009. 307 с.
106. Mitev V., Babichenko S., Borelli R., Fiorani L., Grigorov I., Nuvoli M., Palucci M., Pistilli A., Puiu Ad., Rebane O., Santoro S. Mid-IR DIAL for high-resolution mapping of explosive precursors // Proc. SPIE. 2013. V. 8894. P. 88940S-1.
107. Romanovskii O.A., et al. Mobile 3.4-mm differential absorption lidar system for remote sensing of the atmospheric methane // Proc. SPIE. 2021. V. 119162021. P. 119161T.
108. Yakovlev S., Sadovnikov S., Kharchenko O., Kravtsova N. Remote sensing of atmospheric methane with IR OPO lidar system // Atmosphere. 2020. V. 11, N 1. P. 70. DOI: 10.3390/atmos11010070.
109. Prasad N.S., Geiger A.R. Remote sensing of propane and methane by means of a differential absorption lidar by topographic reflection // Opt. Engin. 1996. V. 35, N 4. P. 1105–1111.
110. Borisov A.V., Syrkina A.G., Kuz'min D.A., Ryabov V.V., Boyko A.A., Zaharova O., Zasedatel' V.S., Kistenev Y.V. Application of machine learning and laser optical-acousticspectroscopy to study the profile of exhaled air volatile markers of acute myocardial infarction // J. Breath Res. 2021. V. 15, N 2. P. 027104.
111. Sherstov I.V., Kolker D.B. Photoacoustic methane gas analyser based on a 3.3-mm optical parametric oscillator// Quant. Electron. 2020. V. 50, N 11. P. 1063.