Vol. 31, issue 03, article # 15

Zhiltsova A. A., Kharcheva A. V., Krasnova E. D., Lunina O. N., Voronov D. A., Savvichev A. S., Gorshkova O. M., Patsaeva S. V. Spectroscopic study of green sulfur bacteria in stratified water bodies of the Kandalaksha Gulf of the White Sea. // Optika Atmosfery i Okeana. 2018. V. 31. No. 03. P. 233–239. DOI: 10.15372/AOO20180315 [in Russian].
Copy the reference to clipboard

The optical characteristics of water in the stratified lakes of the White Sea are of particular interest in connection with the observation of thin colored layers around chemocline resulting from massive development of anoxygenic phototrophic bacteria. While the chlorophyll optical properties are widely used in remote sensing, the spectral characteristics of bacteriochlorophylls (BChl) for natural microbial communities have been little studied. Spectral study of green sulfur bacteria of four water bodies of the Kandalaksha Gulf of the White Sea was carried out in the work. Absorption and fluorescence spectra were measured for water sampled in March 2017 from various depths and compared with spectra of monocultures isolated from the same reservoirs earlier. It was shown that the fluorescence of BChl in the living cells of green sulfur bacteria has two overlapping emission bands: in the region 740–770 nm (BChl d and e) and at 815 nm (BChl a). The wavelength of maximum of the first band depends on the ratio of the concentrations of green-colored and brown-colored forms of bacteria containing different types of BChl. The new method for determination of contributions of two types of bacteria is proposed, based on the deconvolution of fluorescence spectrum into three bands which parameters were determined from the spectra of monocultures. The BChl content at various water depths was estimated and the percentage ratio of different types of phototrophic bacteria was determined.


anoxygenic phototrophic bacteria, green sulphur bacteria, fluorescence, absorption, bacteriochlorophyll, the White Sea


  1. Oostergetel G., van Amerongen H., Boekema E. The chlorosome: А prototype for efficient light harvesting in photosynthesis // Photosynth. Res. 2010. V. 104, N 2–3. P. 245–255.
  2. Ecology of Meromictic Lakes (Ecological Studies) / R. Gulati, E. Zadereev, A. Degermendzhi (eds.). Switzerland: Springer, 2017. 405 p.
  3. Krasnova E.D., Pantjulin A.N. Kislo-sladkie ozera, polnye chudes // Priroda. 2013. N 2. P. 39–48.
  4. Krasnova E.D., Voronov D.A., Demidenko N.A., Kokrjatskaja N.M., Pantjulin A.N., Rogatyh T.A., Samsonov T.E., Frolova N.L. Issledovanija otdeljajushhihsja vodoemov na poberezh'e Belogo morja. Kompleksnye issledovanija Bab'ego morja, poluizolirovannoj belomorskoj laguny: geologija, gidrologija, biota – izmenenija na fone transgressii beregov // Tr. Belomorskoj biostancii MGU. M.: T-vo nauch. izd. KMK, 2016. V. 12. P. 211–241.
  5. Lunina O.N., Savvichev A.S., Kuznecov B.B., Pimenov N.V., Gorlenko V.M. Anoksigennye fototrofnye bakterii stratificirovannogo ozera Kislo-Sladkoe (Kandalakshskij zaliv Belogo morja) // Mikrobiologija. 2014. V. 83, N 1. P. 90–108.
  6. Krasnova E.D., Voronov D.A. Frolova N., Pantyulin A., Samsonov T. Salt lakes separated from the White Sea // EARSeL eProceedings. 2015. V. 14. P. 8–22.
  7. Sistema Belogo morja. Vodnaja tolshha i vzaimodejstvujushhie s nej atmosfera, kriosfera, rechnoj stok i biosfera / pod red. A.P. Lisicyna.  M.: Nauchnyj mir, 2012. V. 2. P. 433–579.
  8. Romanenko F.A., Shilova O.S. Poslelednikovoe podnjatie Karel'skogo berega Belogo morja po dannym radiouglerodnogo i diatomovogo analizov ozerno-bolotnyh otlozhenij poluostrova Kindo // Dokl. AN. 2012. V. 442, N 4. P. 544–548.
  9. Kharcheva A.V., Meschankin A.V., Lyalin I.I., Krasnova E.D., Voronov D.A., Patsaeva S.V. The study of coastal meromictic water basins in the Kandalaksha Gulf of the White Sea by spectral and physicochemical methods // Proc. SPIE. 2014. V. 9031. P. 90310T-1–90310T-6.
  10. Kharcheva A.V., Krasnova E.D., Voronov D.A., Patsaeva S.V. Spectroscopic study of the microbial community in chemocline zones of relic meromictic lakes separating from the White Sea // Proc. SPIE. 2015. V. 9448. P. 94480I-1–94480I-11
  11. Krasnova E., Kharcheva A., Milyutina I., Voronov D., Patsaeva S. Study of microbial communities in redox zone of meromictic lakes isolated from the White Sea using spectral and molecular methods // J. Mar. Biol. Assoc. U. K. 2015. V. 95, N 8. P. 1579–1590.
  12. Kharcheva A.V., Krasnova E.D., Gorlenko V.M., Lu-nina O.N., Savvichev A.S., Voronov D.A., Zhiltsova A.A., Patsaeva S.V. Depth profiles of spectral and hydrological characteristics of water and their relation to abundances of green sulfur bacteria in the stratified lakes of the White Sea // Proc. SPIE. 2016. V. 9917. P. 99170Q–1–99170Q–16.
  13. Mishanin V.I., Trubitsin B.V., Patsaeva S.V., Ptushenko V.V., Solovchenko A.E., Tikhonov A.N. Acclimation of shade-tolerant and light-resistant tradescantia species to growth light: Chlorophyll a fluorescence, electron transport, and xanthophyll content // Photosynth. Res. 2017. V. 133, N 1–3. P. 87–102.
  14. Terekhova V.A., Gladkova M.M. Engineered nanomaterials in soil: Problems in assessing their effect on living organisms // Eurasian Soil Sci. 2013. V. 46, N 12. P. 1203–1210.
  15. Pelevin V., Zlinszky A., Khimchenko E., Toth V. Ground truth data on chlorophyll-a, chromophoric dissolved organic matter and suspended sediment concentrations in the upper water layer as obtained by LIF lidar at high spatial resolution // Int. J. Remote Sens. 2017. V. 38, N 7. P. 1967–1982.
  16. Sutorihin I.A., Bukatyj V.I., Akulova O.B. Sezonnye izmenenija spektral'noj prozrachnosti i koncentracii hlorofilla a v raznotipnyh ozerah // Optika atmosf. i okeana. 2014. V. 27, N 9. P. 801–806.
  17. Orf G.S., Blankenship R.E. Chlorosome antenna complexes from green photosynthetic bacteria // Photosynth. Res. 2013. V. 16. P. 315–331.
  18. Olson J.M. Chlorophyll Organization and Function in Green Photosynthetic Bacteria // Photochem. Photobiol. 1998. V. 67, N 1. P. 61–75.
  19. Feiler U., Hauska G. The reaction center from Green Sulfur Bacteria // Anoxygenic Photosynthetic Bacteria / R.E. Blankenship, M.T. Madigan, C.E. Bauer (eds.). 1995. P. 665–685.
  20. Yakovlev A., Novoderezhkin V., Taisova A., Shuva-lov V., Fetisova Z. Orientation of B798 BChl a Q y transition dipoles in Chloroflexus aurantiacus chlorosomes: Polarized transient absorption spectroscopy studies // Photosynth. Res. 2015. V. 125, N 1–2. P. 31–42.
  21. Overmann J., Tilzer M.M. Control of primary productivity and the significance of photosynthetic bacteria in a meromictic kettle lake Mittlerer Buchensee, West-Germany // Aquat. Sci. 1989. V. 51. P. 261–278.
  22. Nusch E.A. Comparison of different methods for chlorophyll and phaeopigment determination // Arch. Hydrobiol. Beith. Ergebn. Limnol. 1980. V. 14. P. 14–36.
  23. Fotosintezirujushhie mikroorganizmy / otv. red. V.F. Gal'chenko // Tr. in-ta mikrobiologii im. S.N. Vinogradskogo. M.: MAKS Press, 2010. iss. 15. P. 133–175.
  24. Kharcheva A.V., Zhiltsova A.A., Lunina O.N., Savvichev A.S., Patsaeva S.V. Quantification of two forms of green sulfur bacteria in their natural habitat using bacteriochlorophyll fluorescence spectra // Proc. SPIE. 2016. V. 9917. P. 99170P–1–99170P–8.
  25. Harcheva A.V., Zhil'cova A.A., Lunina O.N., Krasnova  E.D., Voronov D.A., Savichev A.S., Pacaeva S.V. Fluorescencija bakteriohlorofillov zelenyh sernyh bakterij v anajerobnoj zone dvuh prirodnyh vodoemov // Vestn. MGU. Fizika, astronomija. 2018. (v pechati).