The coherence length and the degree of broadening of a laser beam under the action of turbulence are estimated from the results of remote acoustic sounding of the atmospheric boundary layer with the Volna-4M sodar. The daily average profile of the coherence length in different seasons is considered. Corrections to the effective radius of a laser beam due to turbulence and the monthly average values of these corrections are calculated. A noticeable excess of the possible broadening of the laser beam in winter above that in summer is revealed.
atmosphere, sounding, coherence, laser radiation, sodar, turbulence, laser beam broadening
1. Lukin V.P. Vozmozhnosti natselivaniya opticheskih puchkov cherez turbulentnuyu atmosferu // Optika atmosf. i okeana. 2005. V. 18, N 1–2. P. 75–86.
2. Asanov S.V., Gejnts Yu.E., Zemlyanov A.A., Ignat'ev A.B., Matvienko G.G., Morozov V.V., Tarasenkova A.V. Prognoz rasprostraneniya intensivnogo lazernogo izlucheniya blizhnego i srednego IK spektral'nyh diapazonov pri rabote na naklonnyh vysotnyh atmosfernyh trassah // Optika atmosf. i okeana. 2016. V. 29, N 3. P. 167–176; Аsanov S.V., Gеyntz Yu.E., Zemlyanov А.А., Ignatyev А.B., Маtvienkо G.G., Моrоzоv V.V., Таrаsеnkova А.V. Forecast of intense Near- and Mid-IR laser radiation propagation along slant atmospheric paths // Atmos. Ocean. Opt. 2016. V. 29, N 4. P. 315–323.
3. Asanov S.V., Belov V.V., Bulygin A.D., Gejnts Yu.E., Dudorov V.V., Zemlyanov A.A., Ignat'ev A.B., Kanev F.Yu., Kolosov V.V., Konyaev P.A., Lukin V.P., Matvienko G.G., Morozov V.V., Nosov V.V., Ponomarev YU.N., Ptashnik I.V., Tarasenkov M.V. Opticheskaya model' zemnoj atmosfery dlya intensivnogo lazernogo izlucheniya blizhnego i srednego IK spektral'nyh diapazonov // Optika atmosf. i okeana. 2015. V. 28, N 4. P. 338–345.
4. Travouillon T., Schöck M., Els S., Riddle R., Skidmore W. Using a sodar to measure optical turbulence and wind speed for the thirty meter telescope site testing. Part I: Reproducibility // Bound.-Layer Meteorol. 2011. V. 141, N 2. P. 273–288.
5. Travouillon T., Schöck M., Els S., Riddle R., Skidmore W. Using a sodar to measure optical turbulence and wind speed for the thirty meter telescope site testing. Part II: Comparison with independent instruments // Bound.-Layer Meteorol. 2011. V. 141, N 2. P. 289–300.
6. Odintsov S.L., Gladkih V.A., Kamardin A.P., Mamyshev V.P., Nevzorova I.V. Otsenki pokazatelya prelomleniya i regulyarnoj refraktsii opticheskih voln v pogranichnom sloe atmosfery. Part 1. Pokazatel' prelomleniya // Optika atmosf. i okeana. 2017. V. 30, N 10. P. 821–828.
7. Odintsov S.L., Gladkih V.A., Kamardin A.P., Mamyshev V.P., Nevzorova I.V. Otsenki pokazatelya prelomleniya i regulyarnoj refraktsii opticheskih voln v pogranichnom sloe atmosfery. Part 2. Refraktsiya lazernogo lucha // Optika atmosf. i okeana. 2017. V. 30, N 10. P. 829–833.
8. Odintsov S.L., Gladkih V.A., Kamardin A.P., Nevzorova I.V. Ispol'zovanie rezul'tatov akusticheskoj diagnostiki pogranichnogo sloya atmosfery dlya otsenki vliyaniya turbulentnosti na harakteristiki lazernogo puchka // Optika atmosf. i okeana. 2017. V. 30, N 12. P. 1008–1016.
9. Kadygrov E.N., Kuznetsova I.N. Metodicheskie rekomendatsii po ispol'zovaniyu dannyh distantsionnyh izmerenij profilej temperatury v pogranichnom sloe mikrovolnovymi profilemerami: teoriya i praktika. Dolgoprudnyj: Fizmatkniga, 2015. 171 p.
10. Kamardin A.P., Gladkih V.A., Odintsov S.L., Fedorov V.A. Meteorologicheskij akusticheskij doplerovskij lokator (sodar) «VOLNA-4M-ST» // Pribory. 2017. V. 202, N 4. P. 37–44.
11. Гладких В.А., Макиенко А.Э. Цифровая ультразвуковая метеостанция // Pribory. 2009. V. 109, N 7. P. 21–25.
12. Mamysheva A.A., Odintsov S.L. Eksperimental'naya otsenka kineticheskoj energii turbulentnosti v prizemnom sloe atmosfery nad urbanizirovannoj territoriej // Optika atmosf. i okeana. 2011. V. 24, N 9. P. 817–827.
13. Petenko I., Mastrantonio G., Viola A., Argentini S., Pietroni I. Some statistics of the temperature structure parameter in the convective boundary layer observed by sodar // Bound.-Layer Meteorol. 2014. V. 150, N 2. P. 215–233.
14. Wainwright C.E., Bonin T.A., Chilson P.B., Gibbs J.A., Fedorovich E., Palmer R.D. Methods for evaluating the temperature structure function parameter using unmanned aerial systems and large-eddy simulation // Bound.-Layer Meteorol. 2015. V. 155, N 2. P. 189–208.
15. Bonin T.A., Goines D.C., Scott A.K., Wainwright C.E., Gibbs J.A., Chilson P.B. Measurement of the temperature structur-function parameters with small unmanned aerial system compared with a sodar // Bound.-Layer Meteorol. 2015. V. 155, N 3. P. 417–434.
16. Andrews L.C., Philips R.L., Crabbs R., Wayne D., Leclerc T., Sauer P. Creating a C profile as a function of altitude using scintillation measurements along a slant path // Proc. SPIE. 2012. V. 8238. P. 82380F-1–12.
17. Gladkih V.A., Mamyshev V.P., Odintsov S.L. Eksperimental'nye otsenki strukturnoj harakteristiki pokazatelya prelomleniya opticheskih voln v prizemnom sloe atmosfery // Optika atmosf. i okeana. 2015. V. 28, N 4. P. 309–318; Gladkikh V.А., Маmyshev V.P., Оdintsov S.L. Experimental estimates of the structure parameter of the refractive index for optical waves in the surface air layer // Atmos. Ocean. Opt. 2015. V. 28, N 5. P. 426–435.
18. Sprung D., Grossmann P., Sucher E. Investigation of seasonal and diurnal cycles on the height dependence of optical turbulence in the lower atmospheric boundary layer // Proc. SPIE. 2012. V. 8517. P. 85170K-1–12.
19. Sprung D., Sucher E., Weiss-Wrana K., Stein K. Stability and height dependant variations of the structure function parameters in the lower atmospheric boundary layer investigated from measurements of the long-term experiment VERTURM (vertical turbulence measurements) // Proc. SPIE. 2011. V. 8178. P. 817809-1–12.
20. Antoshkin L.V., Botygina N.N., Bol'basova L.A., Emaleev O.N., Konyaev P.A., Kopylov E.A., Kovadlo P.G., Kolobov D.Yu., Kudryashov A.V., Lavrinov V.V., Lavrinova L.N., Lukin V.P., Chuprakov S.A., Selin A.A., Shihovtsev A.Yu. Adaptivnaya opticheskaya sistema dlya solnechnogo teleskopa, obespechivayushchaya ego rabotosposobnost' v usloviyah sil'noj atmosfernoj turbulentnosti // Optika atmosf. i okeana. 2016. V. 29, N 11. P. 895–904; Аntoshkin L.V., Bоtygina N.N., Bоlbasovа L.А., Еmаleev О.N., Kоnyaev P.А., Kоpylov Е.А., Kоvadlо P.G., Kоlоbоv D.Yu., Kudryashov А.V., Lаvrinov V.V., Lаvrinova L.N., Lukin V.P., Chupakov S.А., Sеlin А.А., Shikhovtsev А.Yu. Adaptive optics system for solar telescope operating under strong atmospheric turbulence // Atmos. Ocean. Opt. 2017. V. 30, N 3. P. 291–299.
21. Kovadlo P.G., Konyaev P.A., Kopylov E.A., Lukin V.P., Selin A.A., Shihovtsev A.Yu. Raboty po naboru dannyh izmereniya turbulentnosti v razlichnye sezony goda // Materialy XHIII Mezhdunar. simpoz. « Optika atmosf. i okeana. Fizika atmosfery». 3–7 july 2017. Irkutsk. P. B151–B154.
22. Razenkov I.A. Turbulentnyj lidar. I. Konstruktsiya // Optika atmosf. i okeana. 2018. V. 31, N 1. P. 41–48; Rаzenkov I.А. Turbulent lidar: I – Desing // Atmos. Ocean. Opt. 2018. V. 31, N 3. P. 273–280.
23. Razenkov I.A. Turbulentnyj lidar. II. Eksperiment // Optika atmosf. i okeana. 2018. V. 31, N 2. P. 81–89; Rаzenkov I.А. Turbulent lidar: II – Experiment // Atmos. Ocean. Opt. 2018. V. 31, N 3. P. 281–289.