Vol. 35, issue 05, article # 7

Bazhenov O. E. Ozone anomalies in the stratosphere of the Arctic and northern Eurasia: Comparison of 2011 and 2020 events using TEMIS and Aura MLS data. // Optika Atmosfery i Okeana. 2022. V. 35. No. 05. P. 390–396. DOI: 10.15372/AOO20220507 [in Russian].
Copy the reference to clipboard
Abstract:

In winters-springs 2010/2011 and 2019/2020, there were the strongest anomalies of ozone layer in the Arctic stratosphere in the total satellite era. They were due to extraordinarily strong and long-lived stratospheric polar vortices, entailing unprecedented chemical ozone destruction. The analysis of the TEMIS data indicates that the total ozone content (TOC) deviations from the multiyear (2003–2019 except 2011) average were from 37 to 44% in 2011 and from 45 to 55% in 2020 at Arctic observation stations; and from 27 to 36% in 2011 and from 27 to 32% in 2020 in the subarctic latitudes. Based on the Aura MLS data, the minimal temperatures were 8–12% below normal over the Arctic in 2011 and 8–13% below normal in 2020. The ozone concentration dropped to 23% of the multiyear average at an altitude of 20 km on March 22, 2011, and to 6% at an altitude of 19 km on April 15, 2020, for Alert. A detailed correlation analysis showed that the deviations in the concentrations of water vapor and ozone, water vapor and temperature, and ozone and temperature correlate stronger in 2020 than in 2011. The correlations decrease toward the vortex periphery owing to the exchange of air masses between the Arctic and middle latitudes, becoming weakly significant outside the Arctic circle.

Keywords:

total ozone content, ozone concentration, ozone anomaly, Aura MLS data, TEMIS observations

References:

  1. Rieder H.E., Polvani L.M. Are recent Arctic ozone losses caused by increasing greenhouse gases? // Geophys. Res. Lett. 2013. V. 40. P. 4437–4441. DOI: 10.1002/grl.50835.
  2. Rex M., Salawitch R.J., von der Gathen P., Harris N.R.P., Chipperfield M.P., Naujokat B. Arctic ozone loss and climate change // Geophys. Res. Lett. 2004. V. 31. P. L04116. DOI: 10.1029/2003GL018844.
  3. Rex M., Salawitch R.J., Deckelmann H., von der Gathen P., Harris N.R.P., Chipperfield M.P., Naujokat B., Reimer E., Allaart M., Andersen S.B., Bevilacqua R., Braathen G.O., Claude H., Davies J., De Backer H., Dier H., Dorokhov V., Fast H., Gerding M., Godin–Beekmann S., Hoppel K., Johnson B., Kyrö E., Litynska Z., Moore D., Nakane H., Parrondo M.C., Risley Jr. A.D., Skrivankova P., Stübi R., Viatte P., Yushkov V., Zerefos C. Arctic winter 2005: Implications for stratospheric ozone loss and climate change // Geophys. Res. Lett. 2006. V. 33. P. L23808. DOI: 10.1029/2006GL026731.
  4. Hu D., Guan Z., Tian W., Ren R. Recent strengthening of the stratospheric Arctic vortex response to warming in the central North Pacific // Nat. Commun. 2018. N 9. P. 1697. DOI: 10.1038/s41467–018–04138–3.
  5. Weber M., Arosio C., Feng W., Dhomse S.S., Chipperfield M.P., Meier A., Burrows J.P., Eichmann K., Richter A., Rozanov A. The unusual stratospheric Arctic winter 2019/20: Chemical ozone loss from satellite observations and TOMCAT Chemical Transport Model // J. Geophys. Res.: Atmos. 2021. V. 126. P. e2020JD034386. DOI: 10.1029/2020JD034386.
  6. Wohltmann I., von der Gathen P., Lehmann R., Maturilli M., Deckelmann H., Manney G.L., Davies J., Tarasick D., Jepsen N., Kivi R., Lyall N., Re M. Near-complete local reduction of Arctic stratospheric ozone by severe chemical loss in spring 2020 // Geophys. Res. Lett. 2020. V. 47. P. e2020GL089547. DOI: 10.1029/2020GL089547.
  7. Kuttippurath J., Feng W., Müller R., Kumar P., Raj S., Gopikrishnan G.P., Roy R. Exceptional loss in ozone in the Arctic winter/spring of 2019/2020 // Atmos. Chem. Phys. 2021. V. 21. P. 14019–14037. DOI: 10.5194/acp–21–14019–2021.
  8. Bazhenov O.E., Nevzorov A.A., Nevzorov A.V., Dolgii S.I., Makeev A.P. Disturbance of the stratosphere over Tomsk prior to the 2018 major sudden stratospheric warming: Effect of ClO dimer cycle // Opt. Mem. Neural Networks. 2021. V. 30, N 2. P. 146–156. DOI: 10.3103/S1060992X21020065.
  9. Rao J., Garfinkel C.I. Arctic ozone loss in March 2020 and its seasonal prediction in CFSv2: A comparative study with the 1997 and 2011 cases // J. Geophys. Res.: Atmos. 2020. V. 125. P. e2020JD033524. DOI: 10.1029/2020JD033524.
  10. Van der A.R. Tropospheric emission monitoring Internet service, EGU General Assembly 2010. 2–7 May, 2010. Vienna, Austria.
  11. Manney G.L., Livesey N.J., Santee M.L., Froidevaux L., Lambert A., Lawrence Z.D., Millan L.F., Neu J.L., Read W.G., Schwartz M.J., Fuller R.A. Record low Arctic stratospheric ozone in 2020: MLS observations of chemical processes and comparisons with previous extreme winters // Geophys. Res. Lett. 2020. V. 47. DOI: 10.1029/2020GL089063.
  12. Livesey N., Read W., Froidevaux L., Lambert A., Santee M., Schwartz M., Millán L., Jarnot R., Wagner P., Hurst D., Walker K., Sheese P., Nedoluha G. Investigation and amelioration of long-term instrumental drifts in water vapor and nitrous oxide measurements from the Aura Microwave Limb Sounder MLS and their implications for studies of variability and trends // Atmos. Chem. Phys. 2021. V. 21. P. 15409–15430. DOI: 10.5194/acp–21–15409–2021.
  13. Bazhenov O.E. Ozonovaya anomaliya zimoj–vesnoj 2019–2020 years v Arktike i nad severom Evrazii po dannym sputnikovyh (Aura MLS/OMI) nablyudenij // Optika atmosf. i okeana. 2021. V. 34, N 7. P. 524–529; Bazhenov O.E. Ozone anomaly during winter–spring 2019–2020 in the Arctic and over the north of Eurasia using satellite (Aura MLS/OMI) observations // Atmos. Ocean. Opt. 2021. V. 4, N 6. P. 653–658. DOI: 10.1134/S102485602106004X.
  14. Inness A., Chabrillat S., Flemming J., Huijnen V., Langenrock B., Nicolas J., Polichtchouk I., Razinger M. Exceptionally low Arctic stratospheric ozone in spring 2020 as seen in the CAMS reanalysis // J. Geophys. Res.: Atmos. 2020. V. 125, N 23. P. e2020JD033563. DOI: 10.1029/2020JD033563.
  15. Solomon S. Stratospheric ozone depletion: A review of concepts and history // Rev. Geophys. 1999. V. 37, N 3. P. 275–316. DOI: 10.1029/1999RG900008.
  16. Bazhenov O.E. Increased humidity in the stratosphere as a possible factor of ozone destruction in the Arctic during the spring 2011 using Aura MLS observations // Int. J. Remote Sens. 2019. V. 40, N 9. P. 3448–3460. DOI: 10.1080/01431161.2018.1547449.
  17. Smyshlyaev S.P., Vargin P.N., Motsakov M.A. Numerical modeling of ozone loss in the exceptional Arctic stratosphere winter–spring of 2020 // Atmos. 2021. V. 12, N 11. P. 1470.
  18. Luk'yanov A.N., Vargin P.N., Yushkov V.A. Lagranzhevye issledovaniya anomal'no ustojchivogo arkticheskogo stratosfernogo polyarnogo vihrya zimoj 2019–2020 year // Izv. RAN. Fiz. atmosf. i okeana. 2021. V. 57, N 3. P. 278–285.
  19. Tsvetkova N.D., Vargin P.N., Luk'yanov A.N., Kiryushov B.M., Yushkov V.A., Hattatov V.U. Issledovanie himicheskogo razrusheniya ozona i dinamicheskih protsessov v stratosfere Arktiki zimoj 2019–2020 years. // Meteorol. i gidrol. 2021. N 9. P. 70–83.
  20. Gathen P., Kivi R., Wohltmann I., Salawitch R., Rex M. Climate change favours large seasonal loss of Arctic ozone // Nat. Commun. 2021. N 12. P. 3886. DOI: 10.1038/s41467–021–24089–6.
  21. Vargin P.N., Kostrykin S.V., Volodin E.M., Pogoreltsev A.I., Wei K. Arctic stratosphere circulation changes in the 21st century in simulations of INM CM5 // Atmos. 2022. V. 13, N 1. P. 25. DOI: 10.3390/atmos13010025.