Experimental results and the analysis of the reasons for the transformation of spectral parameters of a femtosecond laser pulse propagating in atmosphere and in pure molecular nitrogen are presented. The experiment was carried out under aberration focusing conditions. It is shown that the main contribution to the anti-Stokes spectrum broadening is made by cascade parametric four-wave mixing initiated in the filamentation domain by stimulated Raman Stokes scattering on rotational transitions of nitrogen.
femtosecond laser, ultrashort laser pulse, spectrum broadening, simulated Raman scattering, four-wave parametric process
1. Askar'yan G.A. Vozdeistvie gradienta polya intensivnogo elektromagnitnogo lucha na elektrony i atomy // ZhETF. 1962. V. 42, N 6. P. 1567–1570.
2. Talanov V.I. O samofokusirovke volnovykh puchkov v nelineinykh sredakh // Pis'ma v ZhETF. 1965. V. 2, N 5. P. 218–222.
3. Chiao R.Y., Townes C.H. Stimulated brillouin scattering and coherent generation of intense hypersonic waves // Phys. Rev. Lett. 1964. V. 12, N 21. P. 592–595. DOI: 10.1103/PhysRevLett.12.592.
4. Pilipetskii N.F., Rustamov A.R. Nablyudenie samofokusirovki sveta v zhidkostyakh // Pis'ma v ZhETF. 1965. V. 2, N 2. P. 88–90.
5. Korobkin V.V., Alcock A.J. Self-focusing effects associated with laser-induced air breakdown // Phys. Rev. Lett. 1968. V. 21, N 20. P. 1433–1436. DOI: 10.1103/PhysRevLett.21.1433.
6. Basov N.G., Kryukov P.G., Senatskii Yu.V., Chekalin S.V. Poluchenie moshchnykh ul'trakorotkikh impul'sov sveta v lazere na neodimovom stekle // ZhETF. 1969. V. 57. P. 1175–1183.
7. Alfano R.R., Shapiro S.L. Observation of self-phase modulation and small-scale filaments in crystals and glasses // Phys. Rev. Lett. 1970. V. 24, N 11. P. 592–594. DOI: 10.1103/PhysRevLett.24.592.
8. Braun A., Korn G., Liu X., Du D., Squier J., Mourou G. Self-channeling of high-peak-power femtosecond laser pulses in air // Opt. Lett. 1995. V. 20, N 1. P. 73–75. DOI: 10.1364/OL.20.000073.
9. Wille H., Rodriguez M., Kasparian J., Mondelain D., Yu J., Mysyrowicz A., Sauerbrey R., Wolf J.P., Wöste L. Teramobile: A mobile femtosecond-terawatt laser and detection system // Europ. Phys. J. Appl. Phys. 2002. V. 20. P. 183–190. DOI: 10.1051/epjap:2002090.
10. Kasparian J., Rodriguez M., Méjean G., Yu J., Salmon E., Wille H., Bourayou R., Frey S., André Y.-B., Mysyrowicz A., Sauerbrey R., Wolf J.-P., Wöste L. White-light filaments for atmospheric analysis // Science. 2003. V. 301. P. 61–64. DOI: 10.1126/science.1085020.
11. Chin S.L., Chen Y., Kosareva O., Kandidov V.P., Théberge F. What is filament? // Laser Phys. 2008. V. 18, N 8. P. 962–964. DOI: 10.1134/S1054660X08080070.
12. Théberge F., Aközbek N., Liu W., Becker A., Chin S.-L. Tunable ultrashort laser pulses generated through filamentation in gases // Phys. Rev. Lett. 2006. V. 97. P. 023904. DOI: 10.1103/PhysRevLett.97. 023904.
13. Peñano J.R., Sprangle P., Serafim P., Hafizi B., Ting A. Simulated Raman scattering of intense laser pulses in air // Phys. Rev. E. 2003. V. 68. P. 056502. DOI: 10.1103/PhysRevE.68.056502.
14. Peñano J.R., Sprangle P., Hafizi A., Ting A., Gordon D.F., Kapetanakos C.A. Propagation of ultra-short, intense laser pulses in air // Phys. Plasm. 2004. V. 11, N 5. P. 2865–2874. DOI: 10.1063/1.1648020.
15. Kandidov V.P., Golubtsov I.S., Kosareva O.G. Istochniki superkontinuuma v moshchnom femtosekundnom lazernom impul'se pri rasprostranenii v zhidkosti i gaze // Kvant. elektron. 2004. V. 34, N 4. P. 348–354.
16. Liu W., Chin S.L. Abnormal wavelength dependence of the self-cleaning phenomenon during femtosecond-laser-pulse filamentation // Phys. Rev. A. 2007. V. 76, N 1. P. 013826. DOI: 10.1103/PhysRevA.76.013826.
17. Daigle J.-F., Kosareva O., Panov N., Wang T.-J., Hosseini S., Yuan S., Roy G., Chin S.L. Formation and evolution of intense, post-filamentation, ionization-free low divergence beams // Opt. Commun. 2011. V. 284. P. 3601–3606. DOI: 10.1016/j.optcom.2011.03.077.
18. Daigle J.-F., Wang T.-J., Hosseini S., Yuan Sh., Roy G., Chin S.-L. Dynamic behavior of postfilamentation Raman pulses // Appl. Opt. 2011. V. 50, N 33. P. 6234–6238. DOI: 10.1364/AO.50.006234.
19. Kawano H., Hirakawa Y., Imasaka T. Generation of High-order rotational lines in hydrogen by four-wave Raman mixing in femtosecond regime // IEEE J. Quantum Electron. 1998. V. 34, N 2. P. 260–268. DOI: 10.1063/1.3467525.
20. Kurilova M.V., Uryupina D.S., Mazhorova A.V., Gorgutsa S.R., Volkov R.V., Kosareva O.G., Savel'ev A.B. Issledovanie transformatsii spektra femtosekund¬nogo lazernogo izlucheniya pri ego filamentatsii v gazovoi srede // Opt. i spektroskop. 2009. V. 107, N 3. P. 455–460.
21. Théberge F., Lassonde P., Payeur S., Châteauneuf M., Dubois J., Kieffer J.-C. Efficient spectral-step expansion of a filamenting laser pulse // Opt. Lett. 2013. V. 38, N 9. P. 1576–1578. DOI: 10.1364/OL.38.001576.
22. Ivanov N.G., Losev V.F., Prokop’ev V.E., Sitnik K.A. Generation of highly directional supercontinuum in the visible spectrum range // Opt. Commun. 2017. V. 387. P. 322–327. DOI: 10.1016/j.optcom.2016.11.057.
23. Ivanov N.G., Losev V.F., Lubenko D.M., Prokop’ev V.E., Sitnik K.A. Forming of supercontinuum in the visible upon filamentation of a femtosecond pulse in air // Proc. SPIE. 2018. V. 10228. P. 1022809-2. DOI: 10.1117/12.2265987.
24. Lubenko D.M., Ivanov N.G., Alekseev S.V., Prokop'ev V.E., Losev V.F. Formirovanie vysokonapravlennogo izlucheniya belogo sveta v vozdushnom filamente // Izv. RAN. Ser. fiz. 2020. V. 84, N 7. P. 934–937. DOI: 10.31857/S0367676520070145.
25. Prokop'ev V.E., Lubenko D.M., Losev V.F. Issledovanie prostranstvennoi struktury femtosekundnogo lazernogo puchka v oblasti filamenta pri ego aberratsionnoi fokusirovke v vozdukhe // Optika atmosf. i okeana. 2020. V. 33, N 9. P. 685–689. DOI: 10.15372/AOO20200904.
26. Apeksimov D.V., Bagaev S.N., Geints Yu.E., Zemlyanov A.A., Kabanov A.M., Kirpichnikov A.V., Kistinev Yu.V., Krekov G.M., Krekova M.M., Matvienko G.G., Oshlakov V.K., Panina E.K., Petrov V.V., Pestryakov E.V., Ponomarev Yu.N., Sukhanov A.Ya., Tikhomirov B.A., Trunov V.I., Uogintas S.R., Frolov S.A., Kрudorozhkov D.G. Femtosekundnaya atmosfernaya optika / pod obshch. red. S.N. Bagaeva, G.G. Matvienko. Novosibirsk: Izd-vo SO RAN, 2010. 238 p.
27. Apeksimov D.V., Geints Yu.E., Zemlyanov A.A., Kabanov A.M., Matvienko G.G., Oshlakov V.K. Filamentatsiya femtosekundnykh lazernykh impul'sov v vozdukhe / pod obshch. red. d.f.-m.n., prof. A.A. Zemlyanova. Tomsk: Izd-vo IOA SO RAN, 2017. 162 p.
28. Self-focusing: Past and Present. Fundamentals and Prospects / R.W. Boyd, S.G. Lukishova, Y.R. Shen (eds.). New York: Springer, 2009. DOI: 10.1007/978-0-387-34727-1.
29. Théberge F., Liu W., Luo Q., Chin S.L. Ultrabroadband continuum generated in air (down to 230 nm) using ultrashort and intense laser pulses // Appl. Phys. B. 2005. V. 80. P. 221–225. DOI: 10.1007/s00340-004-1689-x.
30. Chin S.L., Wang T.-J., Marceau C., Wu J., Liu J.S., Kosareva O., Panov N., Chen Y.P., Daigle J.-F., Yuan S., Azarm A., Liu W.W., Seideman T., Zeng H.P., Richardson M., Li R., Xu Z.Z. Advances in intense femtosecond laser filamentation in air // Laser Phys. 2011. V. 22, N 1. P. 1–53. DOI: 10.1134/S1054660X11190054.
31. Lubenko D.M., Prokopev V.E. Generation of broadband radiation during filamentation of a femtosecond laser pulse in the atmosphere // J. Siberian Federal University. Math. Phys. 2022. V. 15, N 6. P. 718–723. DOI: 10.17516/1997-1397-2022-15-6-718-723.
32. Shen I.R. Printsipy nelineinoi optiki M.: Nauka, 1989. 150 p.
33. Akhmanov S.A., Vysloukh V.A., Chirkin A.S. Optika femtosekundnykh lazernykh impul'sov. M.: Nauka, 1988. 149 p.
34. Venkin G.V., Il'inskii Yu.A., Mikheev G.M. Vliyanie polyarizatsii izlucheniya na energeticheskie kharakteristiki i porog VKR na vrashchatel'nykh perekhodakh // Kvant. elektron. 1985. V. 12, N 3. P. 608–611.
35. Chen N., Wang T.-J., Zhu Zh., Guo H., Liu Y., Yin F., Sun H., Leng Yu., Li R. Laser elepticity-dependent supercontinuum generation by femtosecond laser filamentation in air // Opt. Lett. 2020. V. 45, N 16. P. 4444–4447. DOI: 10.1364/OL.399206.